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a b s t r a c t

A Kalman filter is developed from a model which characterizes the float service life of a battery into two
phases. Once the latter phase of the float service life, that time when the capacity begins to decrease
rapidly, has been detected the Kalman filter is started. Outputs of the filter are a smoothed version of
the battery capacity and the projected capacity at specified time intervals in the future. It is this project
ahead step that is used to estimate the remaining float service life of the battery.

© 2009 Eaton Powerware Corporation. Published by Elsevier B.V. All rights reserved.

1. Introduction

The float service life of a battery can be divided into two dis-
tinct periods as is depicted in Fig. 1. The first period is that time
during which the loss of capacity is small. This can be thought of
as a threshold or guarantee time. The second is characterized by
a much more rapid decrease of capacity over time and continues
until there is no useable capacity remaining. The length of the first
period is determined by several factors, one of which is the dis-
charge rate used in the test or application. The lower the discharge
rate the longer will be the time of this portion of float service life.
The duration of the second period is governed more by the battery
design and the particular mechanism controlling life.

In most float service applications, such as a UPS, an important
feature of battery management is the ability to estimate the time
remaining for the battery to reach end of life. One method, devel-
oped for this task, is to use the project ahead step in a Kalman
filter loop to estimate the remaining life of the battery. With a suit-
able model of the capacity degradation process during the second
period of float service life, it is possible, after each measurement of
capacity, to estimate the capacity at a specified point in the future.

The use of a Kalman filter for state-of-charge (SOC) applications
has been described in several published papers in recent years.
Chief among these is the series by Plett [1–3] and Vasebi et al. [4].
The models assumed, to which the Kalman filter is applied, are for
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the most part based on known physical principles or properties
of a particular battery chemistry. In some cases electrical circuit
analogues of the electrochemical charge/discharge processes are
developed for the battery chemistry of interest.

In contrast to the approaches summarized above the track taken
in this work is based on observed behavior of the degradation of
capacity of a VRLA battery in float service operation. A probability
distribution is identified that matches this observed behavior. This
distribution is recast as a system of linear differential equations
from which the Kalman filter is obtained.

The sections following will describe the model to be used,
the formulation of the Kalman filter from this model and results
obtained applying this method to actual float service life data.

2. Capacity degradation model

In a float service life application, as a battery ages, two mecha-
nisms govern the rate of degradation of capacity, grid corrosion and
loss of electrolyte. It is important to develop an understanding of
the process by which physical measurements, in this case the pairs
(capacity, time in float service), can be incorporated into a proba-
bilistic setting. The benefit is, it allows the methods of probability
and statistics to be used to explore the data and perform analyses
to determine whether a relationship exists between the measure-
ments. Furthermore, it may be possible to identify the underlying
distribution which might adequately describe the relationship.

Imagine now taking a sample, of some size, of a particular man-
ufacturer’s battery and placing them into the same float service
application. At some interval, not necessarily periodic, the batter-

0378-7753/$ – see front matter © 2009 Eaton Powerware Corporation. Published by Elsevier B.V. All rights reserved.
doi:10.1016/j.jpowsour.2008.12.123

http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:webblburgess@eaton.com
dx.doi.org/10.1016/j.jpowsour.2008.12.123


W.L. Burgess / Journal of Power Sources 191 (2009) 16–21 17

Fig. 1. Relative capacity vs. time of VRLA battery.

ies are discharged using a prescribed set of conditions (load and end
voltage). The capacity (or discharge time) is measured and recorded
together with the operating time of the battery. This is repeated
until the capacity of each battery has diminished to a point where
they are no longer useful. At the end of this exercise one will have a
collection of battery capacities and operating times for each battery.

One possible use of the data is to make some estimate of the
length of the float service life of this battery model. That is, how
long will the battery operate before its capacity decreases to some
specified value, generally given as a percentage of the rated or initial
capacity. The first step in this process is to normalize the capacity (or
discharge time) measurements. The method used here is to divide
every capacity measurement, from each battery in the sample by a
reference value, chosen generally from prior test data, to be slightly
larger than the largest capacity in the sample. The result will be a
collection of relative capacities, �, where 0 < � < 1.

Consider now any of the particular points in time at which the
sample of batteries is discharged. There will be a range of (relative)
capacities measured that correspond to the time on test when the
discharges were conducted. It is helpful to think of these different
capacities as being due to different ages of the battery. A battery
with a relative capacity of 0.83 has not aged as much as another in
the sample with a relative capacity of 0.79. In other words the rates
of aging are different for these two batteries since they have both
been on float for the same amount of time. Hence one would expect
the float service life of the first battery to be longer than that of the
second. Continuing along this line of reasoning allows the age of
the battery to be treated as a random variable.

Now it is possible to formulate the relative capacity and time on
test in a probabilistic statement:

ki = Pr{L ≤ Li} = 1 − Pr{L > Li}. (1)

The relative capacity equals the probability that the age of the bat-
tery, L, is less than or equal to the accumulated time on float at the
ith discharge, Li. The expression Pr{L ≤ Li} is the cumulative distri-
bution function. The remaining work is to find a distribution whose
properties match those of the data collected. In [5] the extreme
value distribution was found to adequately represent the capacity
degradation process. It is of the form:

F−1(�) = a1(L − L0) + a0. (2)

Here

(i) L0 is the length of the first period of the float service life;
(ii) L is the age of the battery; L − L0 ≥ 0;

(iii) parameters a1 and a0 are estimated from the data;
(iv) F−1(�) is the inverse distribution function, F−1(�) =

ln[−ln(1 − �)].

The model in (2) defines a random process. To design the Kalman
filter a representation of the random process in terms of a system
of linear differential equations must be developed first. This will be
shown in the following section.

3. Kalman filter formulation

A Kalman filter is an algorithm for obtaining a minimum mean-
square error point estimate of a random process. It is a method of
least squares filtering that is obtained from a state space formu-
lation. To start it is necessary to recast (2) as a system of linear
differential equations. Note that (2) is just a linear equation in the
variable L, with slope a1 and y-intercept a0. For this model let:

y(L) = a1(L − L0) + a0. (3)

Then carrying out the following steps let

x1 = y(L)
x2 = ẏ(L) = ẋ1
ẋ2 = ÿ(L) = 0
y(L0) = a0
ẏ(0) = a1

The resulting system of linear differential equations from these
operations is[

ẋ1
ẋ2

]
=

[
0 1
0 0

][
x1
x2

]
. (4)

The discrete version of the state transition matrix can be obtained
from (4) and is of the form:

�(�t) =
[

u(�t) �t
0 u(�t)

]
(5)

where u(�t) is the unit step function.
The Kalman filter equations or loop are listed in (6)–(10) and

following these the initial conditions will be developed. Following
initialization, the sequence of steps, (6)–(10) are executed in the
order shown. After the last step the process is repeated using the
quantities from the project ahead step as inputs to start the loop
again.

Start filter

(1) Compute Kalman gain:

Kk = P−
k

HT
k [HkP−

k
HT

k + Rk]
−1

(6)

(2) Update estimate with measurement zk:

x̂k = x̂−
k

+ Kk[zk − Hkx̂−
k

] (7)

(3) Compute error covariance for updated estimate:

Pk = [I − KkHk]P−
k

(8)

(4) Project ahead:

x̂−
k+1 = �kx̂k (9)

P−
k+1 = �kPk�T

k (10)

Some of the terms in (6)–(10) can be defined without too much
explanation.

zk =
[

y(Lk)
a1

]
: measurement of normalized capacity, y(Lk), and

slope, a1;

xk =
[

x1k

x2k

]
: state vector at tk;

Hk =
[

1 0
0 1

]
: matrix defining the relationship between the mea-

surement and the state vector.
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