

Available online at www.sciencedirect.com





Journal of Power Sources 170 (2007) 150-159

www.elsevier.com/locate/jpowsour

# 1 kW<sub>e</sub> sodium borohydride hydrogen generation system Part II: Reactor modeling

Jinsong Zhang, Yuan Zheng\*, Jay P. Gore, Issam Mudawar, T.S. Fisher

School of Mechanical Engineering, The Energy Center at Discovery Park, Purdue University, West Lafayette, IN 47907-2088, USA

Received 15 January 2007; received in revised form 7 March 2007; accepted 8 March 2007 Available online 15 March 2007

#### Abstract

Sodium borohydride (NaBH<sub>4</sub>) hydrogen storage systems offer many advantages for hydrogen storage applications. The physical processes inside a NaBH<sub>4</sub> packed bed reactor involve multi-component and multi-phase flow and multi-mode heat and mass transfer. These processes are also coupled with reaction kinetics. To guide reactor design and optimization, a reactor model involving all of these processes is desired. A one-dimensional numerical model in conjunction with the assumption of homogeneous catalysis is developed in this study. Two submodels have been created to simulate non-isothermal water evaporation processes and pressure drop of two-phase flow through the porous medium. The diffusion coefficient of liquid inside the porous catalyst pellets and the mass transfer coefficient of water vapor are estimated by fitting experimental data at one specified condition and have been verified at other conditions. The predicted temperature profiles, fuel conversion, relative humidity and pressure drops match experimental data reasonably well.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Sodium borohydride; Reactor modeling; Porous media; Multi-phase

## 1. Introduction

A sodium borohydride hydrogen generator is unique because both reactants can be stored together, and hydrogen is generated by passing sodium borohydride solution through a catalyst bed to initiate hydrolysis reaction as [1]:

$$NaBH_4 + 2H_2O \xrightarrow{Catalyst} NaBO_2 + 4H_2 + Heat$$
(1)

The effects of catalysts, pH and temperature on sodium borohydride hydrolysis reaction were discussed in Ref. [2]. Our experimental paper [3] discussed system-level experiments on a 1 kW<sub>e</sub> sodium borohydride hydrogen generator and exposes solubility issues that may limit the maximum usable concentration to approximately 15%, which may preclude automotive applications; nevertheless, sodium borohydride systems may still find applications in portable electronic devices and other niche areas [4,5]. Most prior work on sodium borohydride systems has focused on experimental testing, and no work on system-level

0378-7753/\$ - see front matter © 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.jpowsour.2007.03.025 reactor modeling has been reported to date. The processes in the reactor are quite complex, involving multiple components (NaBH<sub>4</sub>, NaOH, NaBO<sub>2</sub>, H<sub>2</sub>O, H<sub>2</sub>) and multiple phases (liquid and gas). In addition, general liquid phase reactions inside a packed bed reactor accompanied by significant water evaporation have not received attention in the literature. As a result, a significant need exists for a sodium borohydride hydrolysis reactor model to enable reactor design and optimization. The development of such a reactor model will also facilitate the study of hydrogen storage systems using other chemical hydrides. Thus motivated, we have developed a one-dimensional numerical model in conjunction with the assumption of homogeneous catalysis and have validated this model with experimental data.

### 2. Experiments

A 1 kW<sub>e</sub> sodium borohydride hydrogen generation system (by assuming a fuel cell efficiency of 50%) has been established for system-level studies. The 1 kW<sub>e</sub> hydrogen generation apparatus was described in detail in a previous paper [3] and is only summarized here. Fig. 1 shows the section view of the

<sup>\*</sup> Corresponding author. Tel.: +1 765 494 0061; fax: +1 765 494 0530. *E-mail address:* zhengy@ecn.purdue.edu (Y. Zheng).

#### Nomenclature

- external surface area per volume of catalytic bed  $a_{g}$  $(m^2 m^{-3}) = 6(1 - \varepsilon)/d_p$  for packed bed  $(m^2 m^{-3})$ cross-sectional area of the reactor  $(m^2)$  $A_{\rm f}$
- specific heat of the fuel  $(kJ kg^{-1} k^{-1})$
- $c_{p,f}$
- $C_{\rm A}$ molar concentration of species A in the fluid  $(\text{kmol}\,\text{m}_{\text{f}}^{-3})$
- particle diameter, equivalent diameter of sphere  $d_{p}$ of the same external surface area (m)
- $d_{\rm t}$ internal tube diameter of the reactor  $(m_r)$
- effective liquid diffusivity inside the catalyst at  $D_{l,A,e}$ temperature  $T (m_f^3 m_p^{-1} s^{-1})$
- liquid diffusivity inside the catalyst at temperature  $D_{l,A}$  $T (m_{\rm f}^3 m_{\rm p}^{-1} {\rm s}^{-1})$
- liquid diffusivity inside the catalyst at temperature  $D_{1,A,0}$  $T_0 (m_f^3 m_p^{-1} s^{-1})$
- activation energy for sodium borohydride hydrol- $E_{act}$ ysis on ruthenium catalyst (66,900 kJ kmol<sup>-1</sup>)
- f<sub>TP</sub> two-phase factor (2.3 was used in current study)
- heat of vaporization of water, assumed to be con $h_{\rm fg}$ stant 2250 kJ kg<sup>-1</sup> or 40,500 kJ kmol<sup>-1</sup>
- $\Delta H_{\rm ads}$ heat of reaction for the adsorption of borohydride ion on the surface of ruthenium catalyst  $(-35,000 \, \text{kJ} \, \text{kmol}^{-1})$
- $\Delta H_{\rm rxn}$ heat of reaction for the sodium borohydride hydrolysis  $(-210,000 \text{ kJ kmol}^{-1})$
- reaction rate coefficient for  $k_{\rm L}$ Langmuire-Hinshelwood kinetic model  $(\text{kmol}\,\text{kg}\,\text{cat}^{-1}\,\text{s}^{-1})$
- mass transfer coefficient from liquid to solid  $k_1$ interface, based on concentration driving force  $(m_f^3 m_i^{-2} s^{-1})$
- mass transfer coefficient for water vapor  $(m^{-1})$  $k_{\rm H_2O}$
- isotherm adsorption coefficient for borohydride Κ ion on the surface of the catalyst  $(m^3 \text{ kmol}^{-1})$ L length of the reactor (m)
- $\dot{m}_{\mathrm{f}}$ mass flow rate of sodium borohydride solution  $(kg s^{-1})$
- initial mass flow rate of sodium borohydride solu- $\dot{m}_{\rm f,0}$ tion (kg s<sup>-1</sup>)
- molecular weight of hydrogen (kg kmol<sup>-1</sup>)  $MW_{H_2}$
- $MW_{H_2O}$  molecular weight of water (kg kmol<sup>-1</sup>)
- molar flow rate of liquid water (kmol s<sup>-1</sup>)  $\dot{n}_{\rm B}$
- molar flow rate of hydrogen (kmol  $s^{-1}$ ) 'nc
- molar flow rate of water vapor carried with hydro- $\dot{n}_{\mathrm{D}}$ gen stream (kmol  $s^{-1}$ )
- total rate of water vaporization per unit catalyst  $n'_{\rm evap}$ mass (kmol water kg cat<sup>-1</sup> s<sup>-1</sup>)
- rate of water vaporization corresponding to the  $n'_{\rm evap,1}$ generation of hydrogen per unit catalyst mass  $(\text{kmol water kg cat}^{-1} \text{ s}^{-1})^{-1}$
- rate of water vaporization corresponding to  $n'_{\rm evap.2}$ mass transfer from catalyst surface to the bulk gas stream per unit catalyst mass (kmol water kg cat<sup>-1</sup> s<sup>-1</sup>)

| $P_{\text{back}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | backpressure of the reactor (bar)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $P_{\text{sat},\text{H}_2\text{C}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (T) saturation pressure of water vapor at temper-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ature T (bar)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $P_{\rm t}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | total pressure of the reactor at location $z$ (bar)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\Delta P_{\rm fritz}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | total pressure drop across the fritzs (Pa, psi)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\Delta P_{\text{total}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | total pressure drop across the reactor (Pa, psi)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $r'_{\rm A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rate of reaction per unit catalyst mass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $(\text{kmol}\text{kg}\text{cat}^{-1}\text{s}^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $Re_1 = d_p$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\rho_1 u_s/\mu_1$ Reynolds number of the liquid phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | universal gas constant, 8.314 (kJ kmol <sup><math>-1</math></sup> K <sup><math>-1</math></sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| RH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | relative humidity of hydrogen stream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Spellet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | the external surface area of the pellet $(m^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | temperature in the reactor at location $z$ (K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $T_{\infty}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ambient temperature ( <i>K</i> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $u_{l,s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | superficial velocity of the liquid phase through the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | bed $(m s^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $u_{g,s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | superficial velocity of the gaseous phase $(m s^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ū                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | average velocity of the multi-phase fluid across                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | the reactor $(m s^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Vg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | volumetric flow rate of the gaseous phase $(m^3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| V <sub>pellet</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | the volume of the pellet $(m^3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $W_{\mathrm{f}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | total mass flow rate of the liquid phase $(kg s^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $W_{g}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | total mass flow rate of the gas phase $(kg s^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $W_{\text{total}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | total mass flow rate of the multi-phase fluid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $({\rm kg}{\rm s}^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $x_{\rm A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | conversion of sodium borohydride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| xquality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | fraction of the gas phase out of the multi-phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <i>x</i> quality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | fluid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $x_{quality}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | fluid<br>axial direction (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| x <sub>quality</sub><br>z<br>Greek l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | fraction of the gas phase out of the multi-phase<br>fluid<br>axial direction (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| x <sub>quality</sub><br>z<br>Greek l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | fraction of the gas phase out of the multi-phase<br>fluid<br>axial direction (m)<br>etters<br>void fraction of packing in a packed bed ( $m_s^3 m^{-3}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $x_{quality}$<br>z<br>Greek l<br>$\varepsilon$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | fraction of the gas phase out of the multi-phase<br>fluid<br>axial direction (m)<br>etters<br>void fraction of packing in a packed bed ( $m_f^3 m_r^{-3}$ )<br>internal void fraction of the catalyst pellet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $x_{quality}$<br>z<br>Greek l<br>$\varepsilon$<br>$\varepsilon_{s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | fraction of the gas phase out of the multi-phase<br>fluid<br>axial direction (m)<br>etters<br>void fraction of packing in a packed bed ( $m_f^3 m_r^{-3}$ )<br>internal void fraction of the catalyst pellet,<br>between 0.3 and 0.8, typically 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $x_{quality}$<br>z<br>Greek l<br>$\varepsilon$<br>$\varepsilon_s$<br>$\phi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | fraction of the gas phase out of the multi-phase<br>fluid<br>axial direction (m)<br>etters<br>void fraction of packing in a packed bed ( $m_f^3 m_r^{-3}$ )<br>internal void fraction of the catalyst pellet,<br>between 0.3 and 0.8, typically 0.40<br>thiele modulus number for cylinder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $x_{quality}$<br>z<br>Greek l<br>$\varepsilon$<br>$\varepsilon_s$<br>$\phi$<br>$p_c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | fraction of the gas phase out of the multi-phase<br>fluid<br>axial direction (m)<br>etters<br>void fraction of packing in a packed bed ( $m_f^3 m_r^{-3}$ )<br>internal void fraction of the catalyst pellet,<br>between 0.3 and 0.8, typically 0.40<br>thiele modulus number for cylinder<br>overall effectiveness factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $x_{quality}$<br>z<br>Greek l<br>$\varepsilon$<br>$\varepsilon_s$<br>$\phi$<br>$\eta_G$<br>$\eta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | fraction of the gas phase out of the multi-phase<br>fluid<br>axial direction (m)<br>etters<br>void fraction of packing in a packed bed ( $m_f^3 m_r^{-3}$ )<br>internal void fraction of the catalyst pellet,<br>between 0.3 and 0.8, typically 0.40<br>thiele modulus number for cylinder<br>overall effectiveness factor<br>effectiveness factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $x_{quality}$<br>z<br>Greek l<br>$\varepsilon$<br>$\varepsilon_s$<br>$\phi$<br>$\eta_G$<br>$\eta$<br>$\mu_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | fraction of the gas phase out of the multi-phase<br>fluid<br>axial direction (m)<br>etters<br>void fraction of packing in a packed bed $(m_f^3 m_r^{-3})$<br>internal void fraction of the catalyst pellet,<br>between 0.3 and 0.8, typically 0.40<br>thiele modulus number for cylinder<br>overall effectiveness factor<br>effectiveness factor<br>liquid viscosity at temperature T (kg m <sup>-1</sup> s <sup>-1</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $x_{quality}$<br>z<br>Greek l<br>$\varepsilon$<br>$\varepsilon_s$<br>$\phi$<br>$\eta_G$<br>$\eta$<br>$\mu_l$<br>$\mu_l$<br>$\mu_l$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | fraction of the gas phase out of the multi-phase<br>fluid<br>axial direction (m)<br>etters<br>void fraction of packing in a packed bed ( $m_f^3 m_r^{-3}$ )<br>internal void fraction of the catalyst pellet,<br>between 0.3 and 0.8, typically 0.40<br>thiele modulus number for cylinder<br>overall effectiveness factor<br>effectiveness factor<br>liquid viscosity at temperature $T$ (kg m <sup>-1</sup> s <sup>-1</sup> )<br>liquid viscosity at temperature $T_0$ (kg m <sup>-1</sup> s <sup>-1</sup> )                                                                                                                                                                                                                                                                                                                                                                                                  |
| $x_{quality}$<br>z<br>Greek l<br>$\varepsilon$<br>$\varepsilon_s$<br>$\phi$<br>$\eta_G$<br>$\eta$<br>$\mu_1$<br>$\mu_{1,0}$<br>$\rho_b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | fraction of the gas phase out of the multi-phase<br>fluid<br>axial direction (m)<br>etters<br>void fraction of packing in a packed bed $(m_f^3 m_r^{-3})$<br>internal void fraction of the catalyst pellet,<br>between 0.3 and 0.8, typically 0.40<br>thiele modulus number for cylinder<br>overall effectiveness factor<br>effectiveness factor<br>liquid viscosity at temperature $T (\text{kg m}^{-1} \text{ s}^{-1})$<br>liquid viscosity at temperature $T_0 (\text{kg m}^{-1} \text{ s}^{-1})$<br>catalyst bulk density in a packed bed (kg m <sup>-3</sup> )                                                                                                                                                                                                                                                                                                                                             |
| $x_{quality}$<br>z<br>Greek l<br>$\varepsilon$<br>$\varepsilon_s$<br>$\phi$<br>$\eta_G$<br>$\eta$<br>$\mu_1$<br>$\mu_{1,0}$<br>$\rho_b$<br>$\rho_f$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | fraction of the gas phase out of the multi-phase<br>fluid<br>axial direction (m)<br>etters<br>void fraction of packing in a packed bed $(m_f^3 m_r^{-3})$<br>internal void fraction of the catalyst pellet,<br>between 0.3 and 0.8, typically 0.40<br>thiele modulus number for cylinder<br>overall effectiveness factor<br>effectiveness factor<br>liquid viscosity at temperature $T (\text{kg m}^{-1} \text{ s}^{-1})$<br>liquid viscosity at temperature $T_0 (\text{kg m}^{-1} \text{ s}^{-1})$<br>catalyst bulk density in a packed bed $(\text{kg m}^{-3})$<br>fluid density (kg m <sup>-3</sup> )                                                                                                                                                                                                                                                                                                       |
| $x_{quality}$<br>z<br>Greek l<br>$\varepsilon$<br>$\varepsilon_s$<br>$\phi$<br>$\eta_G$<br>$\eta$<br>$\mu_1$<br>$\mu_{1,0}$<br>$\rho_b$<br>$\rho_f$<br>$\rho_\sigma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | fraction of the gas phase out of the multi-phase<br>fluid<br>axial direction (m)<br>etters<br>void fraction of packing in a packed bed $(m_f^3 m_r^{-3})$<br>internal void fraction of the catalyst pellet,<br>between 0.3 and 0.8, typically 0.40<br>thiele modulus number for cylinder<br>overall effectiveness factor<br>effectiveness factor<br>liquid viscosity at temperature $T (\text{kg m}^{-1} \text{ s}^{-1})$<br>liquid viscosity at temperature $T_0 (\text{kg m}^{-1} \text{ s}^{-1})$<br>catalyst bulk density in a packed bed $(\text{kg m}^{-3})$<br>fluid density (kg m <sup>-3</sup> )<br>density of the gaseous phase (kg m <sup>-3</sup> )                                                                                                                                                                                                                                                 |
| $x_{quality}$<br>z<br>Greek l<br>$\varepsilon$<br>$\varepsilon_s$<br>$\phi$<br>$\eta_G$<br>$\eta$<br>$\mu_1$<br>$\mu_{1,0}$<br>$\rho_b$<br>$\rho_f$<br>$\rho_g$<br>$\rho_s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | fraction of the gas phase out of the multi-phase<br>fluid<br>axial direction (m)<br>etters<br>void fraction of packing in a packed bed $(m_f^3 m_r^{-3})$<br>internal void fraction of the catalyst pellet,<br>between 0.3 and 0.8, typically 0.40<br>thiele modulus number for cylinder<br>overall effectiveness factor<br>effectiveness factor<br>liquid viscosity at temperature $T$ (kg m <sup>-1</sup> s <sup>-1</sup> )<br>liquid viscosity at temperature $T_0$ (kg m <sup>-1</sup> s <sup>-1</sup> )<br>catalyst bulk density in a packed bed (kg m <sup>-3</sup> )<br>fluid density (kg m <sup>-3</sup> )<br>density of the gaseous phase (kg m <sup>-3</sup> )                                                                                                                                                                                                                                        |
| $x_{quality}$<br>z<br>Greek l<br>$\varepsilon$<br>$\varepsilon$<br>$\delta$<br>$\phi$<br>$\eta_G$<br>$\eta$<br>$\mu_1$<br>$\mu_{1,0}$<br>$\rho_b$<br>$\rho_f$<br>$\rho_g$<br>$\rho_s$<br>$\rho_H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | fraction of the gas phase out of the multi-phase<br>fluid<br>axial direction (m)<br>etters<br>void fraction of packing in a packed bed $(m_f^3 m_r^{-3})$<br>internal void fraction of the catalyst pellet,<br>between 0.3 and 0.8, typically 0.40<br>thiele modulus number for cylinder<br>overall effectiveness factor<br>effectiveness factor<br>liquid viscosity at temperature $T$ (kg m <sup>-1</sup> s <sup>-1</sup> )<br>liquid viscosity at temperature $T_0$ (kg m <sup>-1</sup> s <sup>-1</sup> )<br>catalyst bulk density in a packed bed (kg m <sup>-3</sup> )<br>fluid density (kg m <sup>-3</sup> )<br>density of the gaseous phase (kg m <sup>-3</sup> )<br>density of the hydrogen gas (kg m <sup>-3</sup> )                                                                                                                                                                                   |
| xquality<br>z<br>Greek $l$<br>$\varepsilon$<br>$\varepsilon_s$<br>$\phi$<br>$\eta_G$<br>$\eta$<br>$\mu_1$<br>$\mu_{1,0}$<br>$\rho_b$<br>$\rho_f$<br>$\rho_g$<br>$\rho_s$<br>$\rho_{H_2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | fraction of the gas phase out of the multi-phase<br>fluid<br>axial direction (m)<br>etters<br>void fraction of packing in a packed bed $(m_f^3 m_r^{-3})$<br>internal void fraction of the catalyst pellet,<br>between 0.3 and 0.8, typically 0.40<br>thiele modulus number for cylinder<br>overall effectiveness factor<br>effectiveness factor<br>liquid viscosity at temperature $T$ (kg m <sup>-1</sup> s <sup>-1</sup> )<br>liquid viscosity at temperature $T_0$ (kg m <sup>-1</sup> s <sup>-1</sup> )<br>catalyst bulk density in a packed bed (kg m <sup>-3</sup> )<br>fluid density (kg m <sup>-3</sup> )<br>density of the gaseous phase (kg m <sup>-3</sup> )<br>density of the hydrogen gas (kg m <sup>-3</sup> )<br>vor density of the water vapor (kg m <sup>-3</sup> )                                                                                                                           |
| xquality<br>z<br>Greek $l$<br>$\varepsilon$<br>$\varepsilon_s$<br>$\phi$<br>$\eta_G$<br>$\eta$<br>$\mu_1$<br>$\mu_{1,0}$<br>$\rho_b$<br>$\rho_f$<br>$\rho_g$<br>$\rho_s$<br>$\rho_{H_2}$<br>$\rho_{H_2O}$ vap<br>$\bar{\rho}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | fraction of the gas phase out of the multi-phase<br>fluid<br>axial direction (m)<br>etters<br>void fraction of packing in a packed bed $(m_f^3 m_r^{-3})$<br>internal void fraction of the catalyst pellet,<br>between 0.3 and 0.8, typically 0.40<br>thiele modulus number for cylinder<br>overall effectiveness factor<br>effectiveness factor<br>liquid viscosity at temperature $T$ (kg m <sup>-1</sup> s <sup>-1</sup> )<br>liquid viscosity at temperature $T_0$ (kg m <sup>-1</sup> s <sup>-1</sup> )<br>catalyst bulk density in a packed bed (kg m <sup>-3</sup> )<br>fluid density (kg m <sup>-3</sup> )<br>density of the gaseous phase (kg m <sup>-3</sup> )<br>density of the hydrogen gas (kg m <sup>-3</sup> )<br>over density of the water vapor (kg m <sup>-3</sup> )<br>weighted average density of the multi-phase fluid                                                                     |
| xquality<br>z<br>Greek $l$<br>$\varepsilon$<br>$\varepsilon_s$<br>$\phi$<br>$\eta_G$<br>$\eta$<br>$\mu_1$<br>$\mu_{1,0}$<br>$\rho_b$<br>$\rho_f$<br>$\rho_g$<br>$\rho_s$<br>$\rho_{H_2}$<br>$\rho_{H_2O}$ vap<br>$\bar{\rho}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | fraction of the gas phase out of the multi-phase<br>fluid<br>axial direction (m)<br>etters<br>void fraction of packing in a packed bed $(m_f^3 m_r^{-3})$<br>internal void fraction of the catalyst pellet,<br>between 0.3 and 0.8, typically 0.40<br>thiele modulus number for cylinder<br>overall effectiveness factor<br>effectiveness factor<br>liquid viscosity at temperature $T$ (kg m <sup>-1</sup> s <sup>-1</sup> )<br>liquid viscosity at temperature $T_0$ (kg m <sup>-1</sup> s <sup>-1</sup> )<br>catalyst bulk density in a packed bed (kg m <sup>-3</sup> )<br>fluid density (kg m <sup>-3</sup> )<br>density of the gaseous phase (kg m <sup>-3</sup> )<br>density of the hydrogen gas (kg m <sup>-3</sup> )<br>weighted average density of the multi-phase fluid<br>(kg m <sup>-3</sup> )                                                                                                     |
| xquality<br>z<br>Greek l<br>$\varepsilon$<br>$\varepsilon_s$<br>$\phi$<br>$\eta_G$<br>$\eta$<br>$\mu_1$<br>$\mu_{1,0}$<br>$\rho_b$<br>$\rho_f$<br>$\rho_g$<br>$\rho_s$<br>$\rho_{H_2}$<br>$\rho_{H_2O}$ vap<br>$\bar{\rho}$<br>$\tau$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | fraction of the gas phase out of the multi-phase<br>fluid<br>axial direction (m)<br>etters<br>void fraction of packing in a packed bed $(m_f^3 m_r^{-3})$<br>internal void fraction of the catalyst pellet,<br>between 0.3 and 0.8, typically 0.40<br>thiele modulus number for cylinder<br>overall effectiveness factor<br>effectiveness factor<br>liquid viscosity at temperature $T$ (kg m <sup>-1</sup> s <sup>-1</sup> )<br>liquid viscosity at temperature $T_0$ (kg m <sup>-1</sup> s <sup>-1</sup> )<br>catalyst bulk density in a packed bed (kg m <sup>-3</sup> )<br>fluid density (kg m <sup>-3</sup> )<br>density of the gaseous phase (kg m <sup>-3</sup> )<br>density of the hydrogen gas (kg m <sup>-3</sup> )<br>over density of the water vapor (kg m <sup>-3</sup> )<br>weighted average density of the multi-phase fluid<br>(kg m <sup>-3</sup> )<br>tortuosity factor, typically 3.0 to 4.0 |
| xquality<br>z<br>Greek l<br>$\varepsilon$<br>$\varepsilon_s$<br>$\phi$<br>$\eta_G$<br>$\eta$<br>$\mu_1$<br>$\mu_{1,0}$<br>$\rho_b$<br>$\rho_f$<br>$\rho_g$<br>$\rho_F$<br>$\rho_H_2$<br>$\rho_H_2$ O vap<br>$\bar{\rho}$<br>$\tau$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | fraction of the gas phase out of the multi-phase<br>fluid<br>axial direction (m)<br>etters<br>void fraction of packing in a packed bed $(m_f^3 m_r^{-3})$<br>internal void fraction of the catalyst pellet,<br>between 0.3 and 0.8, typically 0.40<br>thiele modulus number for cylinder<br>overall effectiveness factor<br>liquid viscosity at temperature $T$ (kg m <sup>-1</sup> s <sup>-1</sup> )<br>liquid viscosity at temperature $T_0$ (kg m <sup>-1</sup> s <sup>-1</sup> )<br>catalyst bulk density in a packed bed (kg m <sup>-3</sup> )<br>fluid density (kg m <sup>-3</sup> )<br>density of the gaseous phase (kg m <sup>-3</sup> )<br>density of the hydrogen gas (kg m <sup>-3</sup> )<br>density of the hydrogen gas (kg m <sup>-3</sup> )<br>weighted average density of the multi-phase fluid<br>(kg m <sup>-3</sup> )<br>tortuosity factor, typically 3.0 to 4.0                             |
| xquality<br>z<br>Greek l<br>ε<br>ε<br>s<br>φ<br>η <sub>G</sub><br>η<br>μ <sub>1</sub><br>μ <sub>1,0</sub><br>ρ <sub>b</sub><br>ρ <sub>f</sub><br>ρ <sub>g</sub><br>ρ <sub>s</sub><br>ρ <sub>H<sub>2</sub></sub><br>ρ <sub>H<sub>2</sub>O vap<br/>ρ<br/>τ<br/>Subscrit</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | fraction of the gas phase out of the multi-phase<br>fluid<br>axial direction (m)<br>etters<br>void fraction of packing in a packed bed $(m_f^3 m_r^{-3})$<br>internal void fraction of the catalyst pellet,<br>between 0.3 and 0.8, typically 0.40<br>thiele modulus number for cylinder<br>overall effectiveness factor<br>effectiveness factor<br>liquid viscosity at temperature $T (kg m^{-1} s^{-1})$<br>liquid viscosity at temperature $T_0 (kg m^{-1} s^{-1})$<br>catalyst bulk density in a packed bed $(kg m^{-3})$<br>fluid density $(kg m^{-3})$<br>density of the gaseous phase $(kg m^{-3})$<br>density of the hydrogen gas $(kg m^{-3})$<br>density of the hydrogen gas $(kg m^{-3})$<br>weighted average density of the multi-phase fluid<br>$(kg m^{-3})$<br>tortuosity factor, typically 3.0 to 4.0                                                                                           |
| xquality<br>z<br>Greek l<br>$\varepsilon$<br>$\varepsilon_s$<br>$\phi$<br>$\eta_G$<br>$\eta$<br>$\mu_1$<br>$\mu_{1,0}$<br>$\rho_b$<br>$\rho_f$<br>$\rho_g$<br>$\rho_s$<br>$\rho_{H_2}$<br>$\rho_{H_2O vap}$<br>$\bar{\rho}$<br>$\tau$<br>Subscription of the second se | fraction of the gas phase out of the multi-phase<br>fluid<br>axial direction (m)<br>etters<br>void fraction of packing in a packed bed $(m_f^3 m_r^{-3})$<br>internal void fraction of the catalyst pellet,<br>between 0.3 and 0.8, typically 0.40<br>thiele modulus number for cylinder<br>overall effectiveness factor<br>effectiveness factor<br>liquid viscosity at temperature $T (kg m^{-1} s^{-1})$<br>liquid viscosity at temperature $T_0 (kg m^{-1} s^{-1})$<br>catalyst bulk density in a packed bed $(kg m^{-3})$<br>fluid density $(kg m^{-3})$<br>density of the gaseous phase $(kg m^{-3})$<br>density of the hydrogen gas $(kg m^{-3})$<br>density of the hydrogen gas $(kg m^{-3})$<br>weighted average density of the multi-phase fluid<br>$(kg m^{-3})$<br>tortuosity factor, typically 3.0 to 4.0<br><i>pts</i><br>initial condition                                                        |

- b bulk phase
- В liquid water
- С hydrogen

Download English Version:

https://daneshyari.com/en/article/1291384

Download Persian Version:

https://daneshyari.com/article/1291384

Daneshyari.com