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h i g h l i g h t s

� Ten lumped-parameter lithium-ion battery models are systematically reviewed.
� Two variations of lithium-ion cells are used for experimental verifications.
� Real-time system identification is realised using dual Extended Kalman filtering.
� Modelling accuracies are compared for online state-of-charge and power predictions.
� Resistor-capacitor network models are shown to have better dynamic performances.
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a b s t r a c t

This paper presents a systematic review for the most commonly used lumped-parameter equivalent
circuit model structures in lithium-ion battery energy storage applications. These models include the
Combined model, Rint model, two hysteresis models, Randles' model, a modified Randles' model and two
resistor-capacitor (RC) network models with and without hysteresis included. Two variations of the
lithium-ion cell chemistry, namely the lithium-ion iron phosphate (LiFePO4) and lithium nickel-
manganese-cobalt oxide (LiNMC) are used for testing purposes. The model parameters and states are
recursively estimated using a nonlinear system identification technique based on the dual Extended
Kalman Filter (dual-EKF) algorithm. The dynamic performance of the model structures are verified using
the results obtained from a self-designed pulsed-current test and an electric vehicle (EV) drive cycle
based on the New European Drive Cycle (NEDC) profile over a range of operating temperatures. Analysis
on the ten model structures are conducted with respect to state-of-charge (SOC) and state-of-power
(SOP) estimation with erroneous initial conditions. Comparatively, both RC model structures provide
the best dynamic performance, with an outstanding SOC estimation accuracy. For those cell chemistries
with large inherent hysteresis levels (e.g. LiFePO4), the RC model with only one time constant is com-
bined with a dynamic hysteresis model to further enhance the performance of the SOC estimator.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Due to the growing concerns over the emissions of greenhouse
gasses, together with the volatile and ever-increasing cost of fossil
fuels, a global shift towards hybrid electric vehicles (HEVs), plug-in
hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs)
is apparent. The uptake of these electrified vehicles (EVs) within
the transport system not only improves the air quality in dense
urban areas, but can also provide a distributed energy storage

solution for the implementation of the rapidly evolving smart grid
[1]. However, without significant improvements on traction battery
technologies and battery management systems (BMSs), the adop-
tion of EVs by consumers is not feasible.

A key function of the BMS is to assess and monitor the perfor-
mance of the traction battery through accurate characterisation of
various battery states. These states include the state-of-charge
(SOCequantity of deliverable ampere-hour charge at any time),
state-of-health (SOHeability of a battery to provide its nominal
capacity over its service lifetime), state-of-power (SOPea quantity
describing the battery's power capability) and the state-of-function
(SOFea binary yes/no parameter indicating the battery's ability to
complete a task) [2e4].
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Whilst direct measurement techniques such as coulomb-
counting (integration of battery current over the charge or
discharge period) are easy to implement for SOC estimation, they
suffer largely from erroneous initialisation of SOC, drifts caused by
current sensor noise and battery capacity variations due to tem-
perature and SOH. Moreover, the direct measurement of the other
battery states of interest (i.e. SOH, SOP and SOF) for real-time ap-
plications is somewhat impossible. Hence, battery models are often
utilised within the BMS to indirectly infer andmonitor the battery's
operation through themeasurement of its terminal voltage, current
and surface temperature. In addition to accurate characterisation of
the battery states, a candidate model is also desired to be compu-
tationally efficient. In other words, there should be a balance be-
tween model accuracy and complexity so that it can easily be
embedded on a simple and inexpensive microprocessor unit
(MCU), similar to those found in EV BMS hardware.

The battery models presented in literature mainly fall into one
of the following categories:

1. Electrochemical or physics-based models,
2. Empirical or data-based models, and
3. Equivalent electrical-circuit based models.

Electrochemical models (e.g. Refs. [5e9]) that aim to capture the
dynamic behaviour of battery cells on amacroscopic scale often can
achieve high accuracies. Thesemodels are defined bya high number
of partial differential equations (PDEs) that must be solved simul-
taneously. The complexity of any electrochemical model is directly
related to the number and order of the governing PDEs, which can
lead to tremendous requirements for memory and computational
power. Another issue that often precludes these models from real-
time applications is that due to the large number of unknown var-
iables, they are likely to run into over-fitting problems, increasing
the uncertainty in the model's output. Alternatively, these models
can be represented by a lower number of ‘reduced order’ PDEs and
by substituting boundary conditions and discretisation, real-time
applications may become achievable (e.g. Refs. [10e12]). However,
this comes at the expense of reduced SOC accuracy and yet the
computational burden on the MCU remains questionable.

Data-based models (e.g. Refs. [13e15]) often adopt empirically
derived equations from experimental data fittings to infer re-
lationships between various battery parameters such as the ter-
minal voltage, throughput current, surface temperature and SOC.
Although these models benefit from simplicity and ease of imple-
mentation, they often suffer from inaccuracies of 5e20% mainly
due to the highly non-linear behaviour of a battery under a dy-
namic load profile. In Refs. [16,17], the authors took a multiple-
model approach to battery modelling using the local model net-
works (LMN). This technique interpolates between different local
linear models to capture the battery's non-linearity due to SOC
variations, relaxation, hysteresis, temperature and the battery
current effects. One downside of the LMN modelling approach is
the excessive requirements for different experiments to train the
model in first place. Generally, the data-based model parameters
are not physically interpretable, which drops their popularity for in
situ estimation and tracking of SOH and SOP. Furthermore, a large
cell sample of the same chemistry is required to create a dataset for
identification and training of data-based models.

In Refs. [18e20], Plett used a series of models including the
combined, simple, zero-state hysteresis, one-state hysteresis and a
non-linear enhanced self-correcting (ESC) model to adaptively es-
timate the battery's SOC. The latter model took into consideration
the effects of the current direction, the SOC dependency of open-
circuit-voltage (OCV) hysteresis and the relaxation or the charge-
recovery effect to improve the model accuracy for dynamic load

profiles. In an attempt to model the OCV hysteresis behaviour
together with the charge recovery effects, Roscher et al. [21] devel-
oped an empirical model whose parameters required off-line iden-
tification. In Refs. [22], Huria et al. proposed a mathematical model
to describe the dynamics of the large hysteresis levels that exist
amongst high-power lithium-ion cells. Further on in the paper, this
model structurewill be referred to as the adaptive hysteresismodel.

The lumped-parameter equivalent circuit models have gained a
lot of interest amongst EV designers for real-time battery state
estimation and power management purposes. This is due to their
simplified mathematical and numerical approaches that minimise
the necessity for computationally intensive procedures. Further-
more, there is often a strong physical relation between the con-
stituent model parameters and the underlying electrochemical
processes that occur within the battery cells. These models use
passive electrical components, such as resistors and capacitors, to
mimic the behavioural response of a battery. The simplest equiva-
lent circuit model is in the form of an ideal voltage source in series
with a resistor [23]. This model assumes that the demand current
has no physical influence on the battery, i.e. no core temperature
variations or undesired transition effects. More complicated
equivalent circuit models include resistor-capacitor (RC) networks
to characterise the battery transient responses with different time-
constants associated with the diffusion and charge-transfer pro-
cesses. Depending on the dynamics of the load profile and the
required modelling accuracy, the number of the parallel RC
branches may vary from one-RC (e.g. Refs. [24e27]) to two-RC (e.g.
Refs. [28e30]). Higher order Models of up to fifth-order have also
been used previously in literature (e.g. Ref. [31]) to improve the
model's impedance response under higher frequencies of operation.

In literature, there are no studies that compare the accuracy and
universality of the reported batterymodels for real-time estimation
of SOC and SOP together. Therefore, this review paper aims to carry
out a systematic study of a number of selected lumped-parameter
battery models for two variations of the lithium-ion cell chemis-
try, namely the lithium-ion iron phosphate (LiFePO4) and the
lithium nickel-manganese-cobalt oxide (LiNMC). The models of
interest in this paper include the combined model, Rint model,
One-state hysteresis model by Plett, Huria et al. hysteresis model,
one- and two-RC models and one- and two-RC models combined
with the hysteresis model proposed by Huria et al. [22]. These
models were nominated based on the number of their appearances
in the literature. The Kalman filter (KF) algorithm is then applied to
simultaneously estimate and identify the model parameters in real
time. Nevertheless, for those models that are non-linear in pa-
rameters (e.g. one- and two-RC models) the extended Kalman filter
(EKF) algorithm is adopted.

This paper is organised as follows. Section 2 describes the
experimental configuration for gathering an accurate dataset for
both training and verification purposes. Section 3 gives a quanti-
tative definition for the SOC, SOP and SOF. Section 4 provides an
overview of the battery model structures of interest in this work.
Section 5 describes the real-time system identification technique
based on the dual-EKF algorithm for both model parameter iden-
tification and battery state estimation. Section 6 compares the
voltage prediction and SOC estimation capabilities of the nomi-
nated model structures. Furthermore, an optimummodel structure
will be put forward for real-time SOP and SOF estimation. And
finally section 7 concludes this paper.

2. Battery dataset generation

2.1. Experimental setup

The experimental setup features amulti-channelMaccor battery
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