Journal of Power Sources 306 (2016) 107-123



Contents lists available at ScienceDirect

# Journal of Power Sources

journal homepage: www.elsevier.com/locate/jpowsour

# Optimal design of solid oxide fuel cell, ammonia-water single effect absorption cycle and Rankine steam cycle hybrid system



Mehdi Mehrpooya <sup>a, b, \*</sup>, Hossein Dehghani <sup>c</sup>, S.M. Ali Moosavian <sup>c</sup>

<sup>a</sup> Renewable Energies and Environment Department, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran

<sup>b</sup> Hydrogen and Fuel Cell Laboratory, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran

<sup>c</sup> School of Chemical Engineering, University College of Engineering, University of Tehran, P.O. Box 11365-4563, Tehran, Iran

## HIGHLIGHTS

• A combined system containing a solid oxide fuel cell is introduced and analyzed.

• In this process electricity-heat and cooling are produced simultaneously.

• Energy and exergy analyses along with economic factors are done.

## A R T I C L E I N F O

Article history: Received 11 April 2015 Received in revised form 26 November 2015 Accepted 27 November 2015 Available online 14 December 2015

Keywords: SOFC Steam cycle Ammonia-water absorption system Optimization Exergy analysis

### ABSTRACT

A combined system containing solid oxide fuel cell-gas turbine power plant, Rankine steam cycle and ammonia-water absorption refrigeration system is introduced and analyzed. In this process, power, heat and cooling are produced. Energy and exergy analyses along with the economic factors are used to distinguish optimum operating point of the system. The developed electrochemical model of the fuel cell is validated with experimental results. Thermodynamic package and main parameters of the absorption refrigeration system are validated. The power output of the system is 500 kW. An optimization problem is defined in order to finding the optimal operating point. Decision variables are current density, temperature of the exhaust gases from the boiler, steam turbine pressure (high and medium), generator temperature and consumed cooling water. Results indicate that electrical efficiency of the combined system is 62.4% (LHV). Produced refrigeration (at -10 °C) and heat recovery are 101 kW and 22.1 kW respectively. Investment cost for the combined system (without absorption cycle) is about 2917\$ kW<sup>-1</sup>.

#### 1. Introduction

In many industrial processes, such as food and chemical industries both electrical power and refrigeration (at low temperatures) are required [1]. Combined cooling heat and power systems have developed in residential and commercial sections. Solid oxide fuel cell (SOFC) and absorption refrigeration systems have been considered and analyzed as cogenerations systems. High efficiency, low emissions, no moving parts, reliability, low maintenance and fuel flexibility are advantages of using solid oxide fuel cells systems [2–5]. Also high operating temperature of the SOFCs causes they are used in cogeneration power plants [6,7]. Absorption

E-mail address: mehrpoya@ut.ac.ir (M. Mehrpooya).

refrigeration systems can work with various heat sources such as waste heat, solar thermal, geothermal and biomass [8]. Generally absorption cycles can be used with two conventional solutions: lithium bromide-water and ammonia-water. Lithium bromidewater cycle is limited to temperatures above the freezing point of water whereas the ammonia-water cycle is favorable for temperatures below 0 °C [2]. So for sub-zero refrigeration, ammonia-water absorption refrigeration system is a good option that can be integrated with SOFC system. A new CCHP system whose main fuel is methane is proposed [9]. Overall energy conversion efficiency of this system can exceed 80% under the given conditions. Different concepts/strategies for SOFC-based integrated systems which are based on direct/indirect thermal coupling and fuel coupling schemes are studied [2]. Integration of SOFC and a double-effect lithium bromide-water absorption is investigated [10]. This hybrid system can achieve a total efficiency of 84% or more in different modes. In addition electrical efficiency has a maximum

<sup>\*</sup> Corresponding author.Renewable Energies and Environment Department, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.

| Nomenclature           |                                                                                                                   | W                      | Work or electric power, kW                                            |  |
|------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------|--|
| А                      | A Area $m^2$                                                                                                      |                        | Creek letters                                                         |  |
| A                      | Active area of each cell $cm^2$                                                                                   | ΔΕχ                    | exergy change kW                                                      |  |
| A.                     | Specific area $m^{-1}$                                                                                            | $\Delta G$             | Gibbs free energy change ki mol $^{-1}$                               |  |
| C C                    | Cost of equipment (\$)                                                                                            | лн                     | Heat of reaction ki mol $^{-1}$                                       |  |
| CF                     | Canacity factor                                                                                                   |                        | Transfer Coefficient 0.5                                              |  |
| COF                    | Cost of electricity $\& Whr^{-1}$                                                                                 | ~ ~                    | Pre exponential factor of anode or cathode $\Lambda$ cm <sup>-2</sup> |  |
| Deff                   | Effective diffusion coefficient of species i $cm^2 s^{-1}$                                                        | Y<br>X.                | Activity coefficient of i th component                                |  |
| Dii                    | Rinary diffusion coefficient between gas species i and i                                                          | 11<br>S                | Thickness cm                                                          |  |
| Dij                    | $cm^2 s^{-1}$                                                                                                     | C C                    | Porosity                                                              |  |
| D                      | Knudsen diffusion coefficient of species i $\text{cm}^2 \text{s}^{-1}$                                            | e<br>n                 | Activation loss V                                                     |  |
| D <sub>1,K</sub>       | Diffusivity of species i in $g_{2s}$ mixture $cm^{2} s^{-1}$                                                      | n                      | Concentration loss V                                                  |  |
| d D <sub>1,M</sub>     | Average pore diameter cm                                                                                          | 'Iconc                 | Electrical efficiency                                                 |  |
| E.                     | Thermodynamic voltage V                                                                                           | 'lelec                 | Final electrical efficiency                                           |  |
| E filermo              | Activation energy of anode or cathode i $mol^{-1}$                                                                | 'lelec(final           | Second law efficiency                                                 |  |
| L <sub>act</sub>       | Every kW                                                                                                          | 'IEX<br>n              | Net overall efficiency                                                |  |
| Ex<br>FxQ              | Evergy associated with heat transfer kW                                                                           | Inet overa             | Overall efficiency                                                    |  |
| EX .                   | Chemical every of mixture kW                                                                                      | n                      | Obmic loss V                                                          |  |
| Ex :                   | Standard molar chemical every kW                                                                                  | Tohmic                 | Tortuosity                                                            |  |
| Lл <sub>0,1</sub><br>Е | Faraday constant $9648850 \text{ mol}^{-1}$                                                                       | τ<br>σ                 | Ionic or electronic conductivity $\Omega^{-1}$ cm <sup>-1</sup>       |  |
| h                      | Specific enthalpy at real condition $kW$                                                                          | ã                      | collision diameter of species i and i nm                              |  |
| h <sub>a</sub>         | Specific enthalpy at environmental condition kW                                                                   | O <sub>l</sub> j<br>Op | Collision diffusion integral                                          |  |
| I                      | Evergy loss kW                                                                                                    | 22D                    | Efficiency defect of combined system equipment                        |  |
| I                      | Interest rate                                                                                                     | ψ<br>ψ                 | Rational efficiency                                                   |  |
| I                      | Current density A $cm^{-2}$                                                                                       | Ψ                      | Rational enterency                                                    |  |
| J<br>İo                | Exchange Current density A $cm^{-2}$                                                                              | Subscripts             |                                                                       |  |
|                        | Chemical engineering index                                                                                        | a                      | absorber                                                              |  |
| IHV                    | Lower Heating value of fuel ki $kg^{-1}$                                                                          | ABC                    | Absorption Cycle                                                      |  |
| M:                     | Molecular weight of species i                                                                                     | AC                     | Flectrical power output with conversion to Alternating                |  |
| M                      | Average molecular weight species i and i                                                                          | ne                     | Current                                                               |  |
| m,                     | Mass flow rate of strong solution kg $hr^{-1}$                                                                    | act                    | activation                                                            |  |
| m <sub>r</sub>         | Mass flow rate of refrigerant, kg $hr^{-1}$                                                                       | AGR                    | Anode Gas Recycle                                                     |  |
| m <sub>fuel</sub>      | Mass flow rate of fuel, kg $s^{-1}$                                                                               | an                     | anode                                                                 |  |
| Ncolls                 | Number of cells                                                                                                   | c                      | condenser                                                             |  |
| n                      | Number of years                                                                                                   | cat                    | cathode                                                               |  |
| na                     | Moles number of electron transferred                                                                              | ch                     | chemical                                                              |  |
| n;                     | Moles rate of species i, mol $s^{-1}$                                                                             | comp                   | vapor compression cycle                                               |  |
| P                      | Total Pressure, bar                                                                                               | con                    | power consumption                                                     |  |
| Pi                     | Partial pressure of species i, bar                                                                                | CS                     | Carbon Steel                                                          |  |
| Po                     | Standard Pressure. 1atm                                                                                           | CW                     | cooling water                                                         |  |
| P,*                    | Reaction site partial pressure of species i, bar                                                                  | е                      | evaporator, electron                                                  |  |
| P <sup>b</sup>         | Bulk partial pressure of species i, bar                                                                           | elec                   | electrical efficiency                                                 |  |
| Ŕ                      | Gas constant, 8.314 $\text{jmol}^{-1}\text{K}^{-1}$ , 83.14 cm <sup>3</sup> bar mol <sup>-1</sup> K <sup>-1</sup> | equi,AB0               | C equivalent power for absorption chiller                             |  |
| R <sub>H2</sub>        | Electrochemical reaction rate of $H_2$ , mol cm <sup>-2</sup> s <sup>-1</sup>                                     | fuel                   | fuel inlet to system                                                  |  |
| Rr                     | Reforming reaction rate, mol $m^{-3} s^{-1}$                                                                      | g                      | generator                                                             |  |
| R <sub>s</sub>         | Shift reaction rate, mol $m^{-3} s^{-1}$                                                                          | HHV                    | Higher Heating Value of fuel                                          |  |
| ร                      | Specific entropy at real condition, kW $K^{-1}$                                                                   | in                     | inlet                                                                 |  |
| So                     | Specific enthalpy at environmental condition, kW $K^{-1}$                                                         | k                      | kinetic                                                               |  |
| S/C                    | Steam to Carbone ratio                                                                                            | out                    | outlet                                                                |  |
| T                      | Temperature, K                                                                                                    | р                      | potential                                                             |  |
| Tap                    | Approach temperature, °C                                                                                          | ph                     | physical                                                              |  |
| To                     | Standard Temperature, 298 K                                                                                       | real                   | real condition                                                        |  |
| TIC                    | Total investment cost, \$                                                                                         | SC                     | Steam Cycle                                                           |  |
| TPC                    | Total production cost, \$ year <sup>-1</sup>                                                                      | SS                     | Stainless steel                                                       |  |
| U <sub>fuel</sub>      | Fuel utilization coefficient                                                                                      | ST                     | Steam Turbine                                                         |  |
| V                      | Voltage of single cell, V                                                                                         |                        |                                                                       |  |

Download English Version:

# https://daneshyari.com/en/article/1292328

Download Persian Version:

https://daneshyari.com/article/1292328

Daneshyari.com