Journal of Power Sources 306 (2016) 171-177

Contents lists available at ScienceDirect

Journal of Power Sources

journal homepage: www.elsevier.com/locate/jpowsour

Efficient bifacial perovskite solar cell based on a highly transparent poly(3,4-ethylenedioxythiophene) as the p-type hole-transporting material

Yaoming Xiao ^{a, b, *}, Gaoyi Han ^{a, b}, Jihuai Wu ^c, Jeng-Yu Lin ^d

^a Institute of Molecular Science, Innovation Center of Chemistry and Molecular Science, Shanxi University, Taiyuan 030006, PR China

^b Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Taiyuan 030006, PR China

^c Institute of Materials Physical Chemistry, Huaqiao University, Quanzhou 362021, PR China

^d Department of Chemical Engineering, Tatung University, Taipei City 104, Taiwan

HIGHLIGHTS

- Efficiently bifacial PSC is prepared based on the highly transparent PEDOT HTM.
- The bifacial PSC reaches 12.33% and 11.78% of the front and rear efficiencies.
- The front efficiency is only decreased by 4.46% to rear efficiency.

ARTICLE INFO

Article history: Received 30 July 2015 Received in revised form 27 November 2015 Accepted 4 December 2015 Available online 17 December 2015

Keywords:

Poly(3,4-ethylenedioxythiophene) p-type hole-transporting material Transparent electrode Electron blocking layer Bifacial perovskite solar cell

G R A P H I C A L A B S T R A C T

ABSTRACT

A novel bifacial perovskite solar cell (PSC) is devised and prepared by using a highly transparent poly(3,4ethylenedioxythiophene) (PEDOT) electrode. The PEDOT is used as the p-type hole-transporting material (HTM) due to the well matched band positions for the charge separation and transport. Moreover, the PEDOT layer can play a role of electron blocking layer at the CH₃NH₃PbJ₃/PEDOT interface to reduce the electron recombination rate because of its LUMO level is higher than that of the perovskite sensitizer. As a result, the bifacial PSC based on the PEDOT HTM yields front and rear efficiencies of 12.33% and 11.78% respectively, which are higher than those of the PSC without the PEDOT HTM (8.67% and 8.27% of the front and rear efficiencies). And the front efficiency is only decreased by 4.46% to the rear efficiency. These promising results highlight the potential application of the PEDOT in the cost-effective and transparent PSC, which could be used in the bifacial solar cell and tandem solar cell.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the past few years, the perovskite solar cell (PSC) has attracted

scientific and technological interest of researchers due to its clean, low-cost, high efficiency, good durability, and easy fabrication [1-14]. In a typical PSC, the high-cost Spiro-MeOTAD is generally used as the hole-transporting material (HTM) to promote the rate of hole transfer for the excited perovskite, which demonstrates low recombination rate and efficient charge transport improving device performance [1-4]. Polytriarylamine (PTAA) [15] and poly(3-hexyl-

^{*} Corresponding author. Institute of Molecular Science, Innovation Center of Chemistry and Molecular Science, Shanxi University, Taiyuan 030006, PR China. *E-mail address:* ymxiao@sxu.edu.cn (Y. Xiao).

thiophene) (P3HT) [16] are also used as the HTMs. For the sake of low-cost, good stability, and simple easy preparation of controllable structures, the p-type conducting polymers, e.g., polypyrrole (PPy) [17], polyaniline (PANI) [18], and poly(3,4-ethylenedioxythiophene) (PEDOT) [19-21] have been successfully employed as cheaper HTMs in all-solid-state dve-sensitized solar cells (DSSCs). Recently, we developed a low-cost dual function PANI as the HTM and the synergistic sensitizer for use in the PSC. 7.34% of the PSC efficiency was achieved due to its unique optical and electronic properties [22]. Moreover, poly(3,4-ethylenedioxythiophene): polv(styrenesulfonate) (PEDOT: PSS) solution in water is widely used for the preparation of optoelectronic device [23], and PEDOT: PSS is known as the most promising candidate as a transparent electrode, as well as a HTM in both standard [9,24,25] and conductive oxide (such as FTO or ITO) free [26,27] architectures in photovoltaic devices.

Furthermore, enhancing the power-generating efficiency of the PSC is still an important issue [28]. The bifacial silicon heterojunction-perovskite organic-inorganic tandem solar cells [29] and bifacial DSSCs have been realized to enhance their efficiency [30,31], which collects sunlight from either of its two sides. Tai et al. reported on a bifacial DSSC with the transparent PANI CE yielding front and rear efficiencies of 6.54 and 4.26% respectively [30]. However, the rear efficiency is decreased by 34.86% to the front efficiency. Similar result (38.06% decreased [31]) by Wu et al. repeated owing to the dark color electrolyte based on high $I_3^$ concentrations was used in the bifacial DSSC. In the PSC field, no $I_3^$ based dark color electrolyte but light-colored HTMs can advantage to prepare the bifacial PSC. However, the non-transparent metal--such as Au, or Ag, or Al-back contact electrode in the PSC presents a significant obstacle to the bifacial PSC. Recently, You et al. reported the fabrication of semi-transparent PSCs by laminating stacked multi-layer graphene as transparent electrodes, the device showed the average efficiencies up to 12.02% and 11.65% when the device was illuminated from the FTO side and graphene side, respectively, and in this device a thin layer of PEDOT:PSS was used to improve the conductivity of graphene and also used as an adhesion layer to the perovskite active layer [32].

Here we devise a novel bifacial PSC based on a highly transparent PEDOT electrode, which is used as the HTM due to the well matched band positions for the charge separation and transport. Moreover, the PEDOT layer can play a role of electron blocking layer at the CH₃NH₃PbI₃/PEDOT interface to reduce the electron recombination rate. Fig. 1 shows the device schematic diagram and energy level diagram of the bifacial PSC. The bifacial PSC based on the PEDOT HTM yields front and rear efficiencies of 12.33% and 11.78% respectively. The efficiency from the front illumination is only decreased by 4.46% to that from the rear illumination, the decrease is much lower than that of the bifacial DSSC.

2. Experimental

2.1. Materials

3,4-ethylenedioxythiophene monomer (EDOT) was purchased from Aldrich, USA. Sodium dodecyl sulfate (SDS), lithium pechlorate (LiClO₄), aqueous ammonia, isopropyl alcohol, methanol, ether, hydroiodic acid (45 wt.% in water), methylamine (30% in methanol), lead iodide (PbI₂), chlorobenzene, acetonitrile, tetrabutyl titanate, and Triton X-100 were purchased from Shanghai Chemical Agent Ltd., China (Analysis purity grade). γ -butyrolactone (>99.9%), tetrabutylammonium hexafluorophosphate (TBAPF₆, 98%), and ferrocene (>99.9%) were purchased from Aladdin. The above agents were used without further purification.

2.2. PEDOT electrode electropolymerization

The PEDOT was electrodeposited on the fluorinated tin oxide (FTO) glass substrate (NSG, 12 Ω sq⁻¹) by the cyclic voltammetry (CV) method from an aqueous solution containing 2.0 mmol L^{-1} EDOT, 10 mmol L^{-1} SDS, and 10 mmol L^{-1} LiClO₄ [33], in which the SDS was used as the dispersion agent for the EDOT monomer being completely dispersed in water, and LiClO₄ was used as the supporting electrolyte for the CV electrodeposition. A three-electrode cell was used with a computer-controlled Autolab potentiostat (Type III) at ambient atmosphere, in which a Pt wire, a saturated silver/silver chloride (Ag/AgCl), and a cleaned FTO glass substrate were used as the counter electrode, the reference electrode, and the working electrode, respectively. Before the plating, FTO substrates $(1.5 \text{ cm} \times 2 \text{ cm})$ were cleaned with acetone and isopropyl alcohol, respectively. The potential range was set between -0.1 V and 1.2 V for 10 cycles for the PEDOT electropolymerization vs. Ag/AgCl at a scan rate of 0.05 V s⁻¹. The obtained PEDOT films were rinsed in distilled water and then immersed in an aqueous ammonia for 12 h to change their conductive state to semiconductor state. Finally, the samples were drying at 80 °C in a vacuum drying oven (Suzhou Jiangdong Precision Instrument Co., Ltd., China).

2.3. Perovskite sensitizer synthesis

The perovskite sensitizer CH₃NH₃PbI₃/ γ -butyrolactone solution was synthesized according to the reported procedure [15]. The CH₃NH₃I was prepared by reacting 20 mL hydroiodic acid (45 wt.% in water) and 20 mL methylamine (30% in methanol) in a 250 mL round-bottomed flask at 0 °C for 2 h with stirring. Then the resulting solution was evaporated at 50 °C for 1 h. The precipitate was washed three times with diethyl ether, dried at 60 °C under a vacuum oven for 24 h, and used without further purification. The synthesized CH₃NH₃I powder (0.395 g) was mixed with PbI₂

Fig. 1. Device schematic diagram and energy level diagram of the bifacial PSC.

Download English Version:

https://daneshyari.com/en/article/1292423

Download Persian Version:

https://daneshyari.com/article/1292423

Daneshyari.com