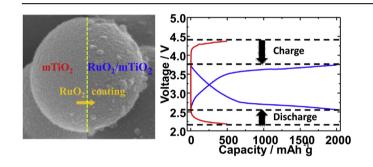
ELSEVIER

Contents lists available at ScienceDirect

Journal of Power Sources

journal homepage: www.elsevier.com/locate/jpowsour

A carbon-free ruthenium oxide/mesoporous titanium dioxide electrode for lithium-oxygen batteries


Jin-Bum Park ^a, Ilias Belharouak ^{b, ***}, Yun Jung Lee ^{a, **}, Yang-Kook Sun ^{a, *}

- ^a Department of Energy Engineering, Hanyang University, Seoul, 133-791, Republic of Korea
- ^b Qatar Environment and Energy Research Institute, Qatar Foundation, P.O. Box 5825, Doha, Qatar

HIGHLIGHTS

- RuO₂ supported mesoporous TiO₂ materials were synthesized by hydrothermal method.
- The Li-O₂ cells using RuO₂/mTiO₂ cathode exhibited low polarization with high energy density.
- From the XRD and XPS results, we confirmed that TiO₂-based electrodes were stable in Li-O₂ batteries.

GRAPHICAL ABSTRACT

ARTICLE INFO

Article history:
Received 25 March 2015
Received in revised form
4 June 2015
Accepted 9 July 2015
Available online 16 July 2015

Keywords: Lithium-oxygen batteries Titanium dioxide Catalyst Ruthenium dioxide Carbon-free electrode

ABSTRACT

Mesoporous TiO_2 with well-distributed RuO_2 catalysts is considered in this paper as a carbon-free cathode material replacement. Benefiting from the highly-porous TiO_2 support structure and high catalytic activity of RuO_2 , the $Li-O_2$ cells with composite RuO_2 /mesoporous TiO_2 cathodes show low charge potentials with a high cell capacity. The stability of the TiO_2 materials was verified by investigating stable cell performance as well as through structural and chemical characterization via X-ray diffraction and X-ray photoelectron spectroscopy. This study demonstrates the possibility of achieving high energy at the cell level, free of carbon instability.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

 Li-O_2 batteries offer the highest energy density among rechargeable batteries. This superb energy density makes the

E-mail addresses: ibelharouak@qf.org.qa (I. Belharouak), yjlee94@hanyang.ac.kr (Y.J. Lee), yksun@hanyang.ac.kr (Y.-K. Sun).

system one of the most attractive energy storage devices for electric vehicles (EV), energy storage systems (ESS), and other applications [1,2] where high energy density is the most important figure of merit. There remain many challenges, however, for the practical application of $\text{Li}-\text{O}_2$ batteries including low energy efficiency caused by the large energy loss during $\text{Li}-\text{O}_2$ electrochemical cycles. The widely-accepted theoretical reaction of $\text{Li}-\text{O}_2$ batteries is $2\text{Li}^+ + \text{O}_2 + 2\text{e}^- \leftrightarrow \text{Li}_2\text{O}_2$. The forward direction forming Li_2O_2 represents the discharge process and the reverse reaction of Li_2O_2 decomposition the charge process; however, many parasitic

^{*} Corresponding author.

^{**} Corresponding author.

^{***} Corresponding author.

reactions have been reported, especially involving electrolyte and carbon materials [3–6]. These undesired side reactions significantly reduce the round-trip efficiency of $\text{Li}-\text{O}_2$ batteries. Carbon in particular, the most common material for air electrodes because of its high surface area and good electrical conductivity, may react to Li_2CO_3 in $\text{Li}-\text{O}_2$ cells that impede the reversible $\text{Li}-\text{O}_2$ reaction [3,6].

Some of the alternative cathode materials suggested recently include TiC [7], Ti₄O₇ [8], indium tin oxide (ITO) [9], MnO₂ [10,11], Co₃O₄ [12,13], and (Co, Mn)₃O₄ [14]. Bruce and his co-workers [7] ascribed the stability of TiC cathodes to the surface TiO₂ layer on TiC. The TiO₂ surface layer was stable from the attack of oxygen radicals during cycling. Recently, TiO₂ nanotubes have been explored as a support for electrocatalysts [15,16]. The resulting cells showed enhanced cycle life due to the higher stability of TiO₂ when compared with carbon materials. The Pt or RuO₂ catalyst-loaded TiO₂ nanotube exhibited an enhanced cyclability with low charge potentials, especially under high current density. Despite the high specific capacity in their research, however, the actual capacity of Li—O₂ batteries was not sufficient for practical application, since the specific capacity was calculated based on the catalyst loading mass, which is only 0.1 mg on a support with diameter of 15 mm. Li—O₂

batteries must be highly reversible with a high cell capacity for high energy applications.

An ITO is attractive material among the candidates of carbon-free cathode materials, because of their high electrical conductivity. But it is too hard to synthesize ITO materials with high surface area for large capacity of $\text{Li}-\text{O}_2$ batteries. TiO_2 is another candidate of carbon-free cathode materials. It has low electrical conductivity, though it is easy to synthesize the porous nano-structured TiO_2 materials for high capacity of $\text{Li}-\text{O}_2$ batteries. Here, we synthesized $\text{RuO}_2/\text{mesoporous}$ TiO_2 composites, abbreviated as $\text{RuO}_2/\text{mTiO}_2$, and used as a cathode material for $\text{Li}-\text{O}_2$ batteries. A carbon-free electrode of $\text{RuO}_2/\text{mTiO}_2$ showed 2000 mAh/g of capacity with a low charge potential of under 4 V.

2. Experimental

2.1. Synthesis of mesoporous TiO₂

Mesoporous anatase TiO_2 (denoted as $mTiO_2$) sub-microspheres were synthesized via the urea-assisted hydrothermal method [17], wherein $TiCl_4$ was used as the starting material. A required amount of high-purity $TiCl_4$ (6.59 mL) was added dropwise to distilled

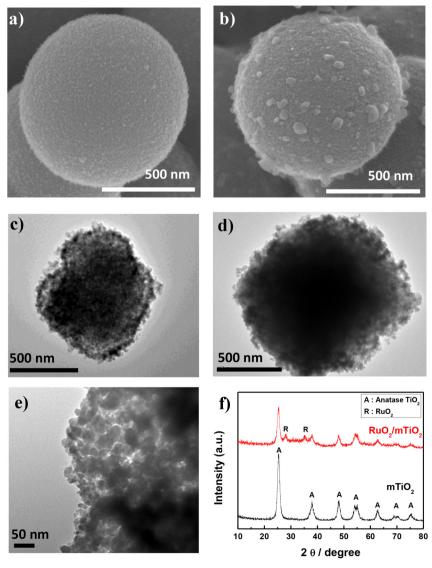


Fig. 1. SEM images of a) mTiO2 and b) RuO2/mTiO2 particles. TEM images of c) mTiO2 and d), e) RuO2/mTiO2 particles. f) XRD patterns of mTiO2 and RuO2/mTiO2.

Download English Version:

https://daneshyari.com/en/article/1292778

Download Persian Version:

 $\underline{https://daneshyari.com/article/1292778}$

Daneshyari.com