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a b s t r a c t

This paper describes a model identification procedure for identifying an electro-thermal model of lithium
ion batteries used in automotive applications. The dynamic model structure adopted is based on an
equivalent circuit model whose parameters are scheduled on the state-of-charge, temperature, and cur-
rent direction. Linear spline functions are used as the functional form for the parametric dependence.
The model identified in this way is valid inside a large range of temperatures and state-of-charge, so
that the resulting model can be used for automotive applications such as on-board estimation of the
state-of-charge and state-of-health. The model coefficients are identified using a multiple step genetic
algorithm based optimization procedure designed for large scale optimization problems. The validity of
the procedure is demonstrated experimentally for an A123 lithium ion iron-phosphate battery.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, the use of hybrid powertrain technology has
become a very effective method of improving fuel economy for
automobiles. Vehicles with hybrid powertrains contain two or
more separate power sources that are selected to complement each
other as well as to provide added capabilities (such as regenerative
braking) to improve the efficiency of the overall operation. Almost
all commercial form of hybrid powertrain involves some combi-
nation of an internal combustion engine (ICE) and one or more
electric machines (EM) (often referred to as hybrid electric vehi-
cles, or HEV). While the ICE derives its power from fossil fuel, the EM
obtains its energy from a battery pack. In order to minimize weight
and size and still meet the energy and power demand while driving,
typical battery cells have high power and high energy density. In
older generations of HEVs (such as the Toyota Prius), nickel-metal
hydride (NiMH) cells have been the battery choice due to their
lower prices and good energy density. This choice is appropriate for
HEVs that operate exclusively in a charge-sustaining mode, where
the battery pack is maintained in a narrow range around a selected
state-of-charge (SoC). Plug-in hybrid vehicles (PHEV) that require
electric traction for extended periods, in a charge depleting mode,
demand much more from the battery pack. In addition, their need
for an all-electric range (AER) requires significantly more energy
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on-board. With the emergence of PHEVs, the vehicle electrification
industry has opted to use the higher energy/power density lithium
ion batteries.

Managing the battery pack for P/HEVs is a challenging prob-
lem. The objective of decreasing fossil fuel consumption while
increasing drivability is in conflict with the objective of prolong-
ing the life of the battery pack. If the full energy content of the
battery pack is used, then clearly more gains are possible. How-
ever, the life of a rechargeable battery is significantly shortened
when the battery is fully discharged or overcharged. In addition,
overcharging (especially in the case of the lithium ion battery)
can lead to catastrophic failure in the form of thermal runaway.
Therefore, combining the objectives of improving fuel economy
and drivability with battery life maximization dictates the require-
ment for careful SoC management of the battery. Furthermore, as
batteries age, they become less able to store and supply energy.
Consequently, the battery management system must be aware of
the state-of-health (SoH) of the battery pack so that the vehicle con-
trol strategies can be adjusted accordingly. Having accurate models
for use in estimating these critical characteristics, particularly
for on-board vehicle application, therefore becomes an important
requirement.

State-of-charge is commonly defined as the ratio between the
amount of charge stored in the battery to the amount of charge that
can be stored when the battery is fully charged. As such, SoC can
be estimated by integrating the current going in and out of the bat-
tery pack. However, system noise and sensor calibration can render
the electrical current measurement inaccurate, resulting in poten-
tially large errors over time when that measurement is integrated.
Another way to estimate the SoC is via the open circuit voltage
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(OCV), taking advantage of the fact that a one-to-one mapping
exists between the SoC and the OCV at a given temperature. How-
ever, the sensitivity of SoC to errors in OCV is very high due to
the flatness of the OCV dependence on SoC for lithium ion batter-
ies (see [1–3]). Because of various dynamics that characterize the
battery behavior, a sufficiently accurate OCV can only be obtained
after a long rest period (often several hours). This method for SoC
estimation is therefore not realistic in real-time operation when the
battery is constantly being used. Consequently, sole dependence on
direct measurements typically does not produce accurate or useful
estimates for SoC. SoH estimation is very similar to SoC estima-
tion in terms of measurement difficulties. For example, a common
way to quantify the SoH is via the capacity of the battery. However,
as P/HEV batteries are never fully discharged, the capacity cannot
be measured directly. In addition, any solution used to solve these
estimation problems must be implementable on-board in real time,
requiring only standard on-board measurements. This effectively
rules out indirect frequency domain based ideas such as proposed
in [4].

Of the many algorithms proposed in the literature to solve
the SoC and SoH estimation problems (see [5] for a summary of
basic algorithms used), model-based algorithms (such as extended
Kalman filter [6,7] and sliding mode observers [8]) are attractive
because they are efficient, robust, and do not require significant
tuning, which is typical for numerically based methods such as arti-
ficial neural networks [9]. In order for model-based algorithms to be
widely applicable, a control-oriented dynamic model is needed. The
two types of models that are commonly used to describe the input-
to-output behavior of a battery are electrochemical models [10]
and equivalent circuit models [11]. Complexities of electrochem-
ical models generally prohibit them from being used effectively
in solving on-board estimation problems. Equivalent circuit mod-
els represent a simplification of electrochemical models by using
electrical circuit elements to describe the battery behavior. For
example, charge transfer across a boundary can be represented by
a resistor in parallel with a capacitor, wherein ion diffusion can
be represented by wave propagation on a transmission line. The
appropriate construction of the equivalent circuit can be obtained
via electrochemical impedance spectroscopy. Equivalent circuit
models obtained this way are capable of exhibiting accuracy over
a wide frequency range. However, very accurate equivalent circuit
models tend to require distributed or nonlinear elements such as
transmission line elements and Warburg impedances, which make
on-board real-time application problematic. As seen in [12] how-
ever, battery responses at room temperature to typical current
inputs seen in automotive applications can be approximated using
an equivalent circuit that only contains resistors and capacitors. In
such a model, circuit elements are scheduled on SoC and current
direction. Models of this type are well suited for model-based algo-
rithms. The primary shortcoming of the model presented in [12] is
the fact that isothermal conditions were assumed. Because temper-
ature can significantly affect battery behavior (such as increasing or
decreasing the internal resistance), models that do not account for
temperature change must themselves be scheduled or otherwise
have limited use as part of a realistic on-board battery management
system.

In this paper, the model in [12] is extended to include tem-
perature dependence. The model is based on an equivalent circuit
consisting of a voltage source and parallel resistor and capacitor cir-
cuits. Temperature dependence is addressed by allowing the model
parameters to be dependent on temperature as well as SoC and
current direction, resulting in a structure with a non-trivial num-
ber of unknown coefficients to be identified. These coefficients are
identified in a multiple step genetic algorithm (GA) based optimiza-
tion procedure, designed for large scale optimization problems.
The identification procedure is discussed in detail for a modeling

Fig. 1. Equivalent circuit used for battery model.

process with validation on an A123 lithium ion iron–phosphate
battery.

2. Battery model

Because the intended application for this model is for use in
on-board estimation problems, the equivalent circuit structure
employed herein will contain no distributed elements (such as
transmission line) and nonlinear or pure frequency domain quanti-
ties such as the Warburg impedance. The resulting model structure
may therefore be characterized using ordinary differential equa-
tions, where the specific structure selected is the Randle equivalent
circuit shown in Fig. 1. The circuit is comprised of an ideal OCV, an
internal resistance R0, and n parallel RC circuits to approximate the
battery dynamics. While not the most sophisticated model struc-
ture possible, this structure is selected because of its simplicity and
universality. As reported in the earlier work [12], this structure pro-
vided a very good approximation for lithium ion battery dynamics
at room temperature. Therefore, a natural next step is an extension
to the case of multiple temperatures.

The dynamic equation that describes the voltage across the ith

RC circuit is given by

dVi

dt
= 1

RiCi
Vi + 1

C
I. (1)

For convenience in identification, this equation can be viewed as a
first order dynamic system in the form

dVi

dt
= −AiVi + AiBiI, (2)

where Ai = 1/(RiCi) and Bi = Ri are the inverse of time constant and
input coefficients, respectively. For now, Ri and Ci (consequently
Ai and Bi) are assumed to be dependent in some fashion on oper-
ating conditions. The precise nature of this dependence, and its
justification, are discussed later.

The OCV in this equivalent circuit model is a function of the SoC.
Technically, the OCV can have small variation with respect to the
temperature. However, in experimental data collected, this differ-
ence is inconsistent and very small, so in this work the OCV is not
parameterized as a function of the temperature. The SoC variation
for a fixed temperature has a particular form. That is, the battery
terminal voltage drops quickly as the SoC approaches 0% and rises
as SoC reaches around 100% [13]. In a relatively large transitional
portion of the SoC, the relation is nearly linear, and throughout the
region the OCV is a strictly increasing function of the SoC. Given
these characteristics, the OCV is modeled herein by a double expo-
nential function as

Voc(z) = V0 + ˛(1 − exp(−ˇz)) + �z + �
(

1 − exp
(

− ε

1 − z

))
, (3)
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