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A Bayesian method for interpretation of electrical conductivity relaxation and isotope exchange/secondary ion
mass spectrometry data is presented and demonstrated on data appearing in the literature. The new method
enables quantification of uncertainty due to data fitting in estimates for the effective surface exchange coefficient
k* and the effective diffusion coefficient D*. The standard infinite series solutions to the semi-infinite diffusion
problem with linearized chemical kinetics at the boundary are utilized, although the Bayesian technique does
not depend on the existence of analytical solutions. The methodology is demonstrated in the analysis of data
appearing in the literature, both for isotope exchange/secondary ionmass spectrometry and electrical conductivity
relaxation. In particular, the utility of the technique in definitively resolving questions of parameter identifiability is
demonstrated in a comparison of two literature studies on the same bulk material that lead to widely different
estimated parameters using the standard nonlinear least squares fit.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Due to the minority carrier status and relatively slow transport
kinetics of ionic species in most mixed ionic–electronic conductors
(MIECs), the measurement of ionic transport properties in mixed
conductors is often a challenge. Perhaps the most direct method of
measurement is the introduction of a labeled ion through the exposure
of the material to a gaseous isotope of low natural abundance, followed
by quenching. The profile of isotope concentration as a function of
distance from the exposed surface can then be measured through a
combination of focused ion beammilling and secondary ionmass spec-
trometry (SIMS). This isotope profile contains information about both
the rate of diffusion and the rate of exchange at the surface, andmaterial
properties characterizing the rate of these processes can be estimated
by fitting a reaction–diffusion model to the data [1–3].

The isotope exchange/SIMS route (IE-SIMS) requires specialized
equipment that is difficult both to obtain and to operate. A more feasible
(if less accurate) alternative formany investigators is electrical conductiv-
ity relaxation (ECR), which takes advantage of the ambipolar nature of
diffusion in mixed conductors, using the electrical conductivity as a
proxy for the ion vacancy concentration [4,5]. Generally a step change
in thepartial pressure of the gas leads to a change in thebulk conductivity,
the rate of which is controlled by surface exchange and ion diffusion. The
reaction–diffusion model applied to IE-SIMS can be modified to account
for this rate, and then fitted to time-dependent conductivity data to

estimate exchange and diffusion parameters. The ECR experiment re-
quires only the ability to control the atmosphere and measure the bulk
conductivity. However, a single ECR experiment provides considerably
less information than IE-SIMS and is burdened by a larger number of
assumptions.

Model identifiability is a frequent hurdle encountered in experi-
ments that involve fitting a multi-parameter model to experimental
data. Model identifiability problems arise when the model is not sensi-
tive to certain types of parameter changes, thus rendering the unique
determination of parameter values difficult or impossible. In the ionics
field, wheremany parameters of interest are not subject to direct obser-
vation, the issue of model identifiability has been addressed by several
investigators. Mitterdorfer and Gauckler addressed the issue in the con-
text of electrodemodel fitting to impedance data, using an ad hocmodel
analysis to show global identifiability for the particular model studied
[6]. Bessler used a sensitivity analysis to exclude potentially problematic
parameters before optimization [7]. Mebane, et al. assessed the local
sensitivity of the cost function used in the fitting of an MIEC defect
model to thermogravimetry data in the neighborhood of the optimum
[8]. Ciucci, et al. developed a formal method of optimal experimental
design (OED) for electrochemical experiments, which improves
confidence for parameter estimates [9–12].

The IE-SIMS and ECR experiments seek to estimate two effective
material properties: the effective surface exchange coefficient k* and
the effective bulk oxygen diffusivity D*. Because the oxygen incorpora-
tion reaction occurs at the boundary of the reaction–diffusion system,
the profile of oxygen ions (or vacancies) measured by IE-SIMS or ECR
(the latter in an average sense), it is possible for one process or the
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other (diffusion or surface exchange) to be rate-limiting: that is, either
experiment may contain a significant amount of information about
that parameter which is associated with the slower, rate-limiting step,
while containing relatively little information about the faster step. It is
also possible for the two processes to be co-limiting. Clearly, an optimal
solution is to use sample geometries that pertain to both surface-
controlled or diffusion-controlled regimes, fitting single-parameter
models to each. The potential problem with this approach is that,
depending on the material properties, it may be very difficult to make
ameasurement on amaterialwith a small enough thickness to uniquely
isolate surface exchange properties. Thin filmsmay be used [13–15], but
films may have different exchange and transport properties from the
corresponding bulk materials due to substrate effects. Armstrong, et al.
developed a methodology for gathering isotope exchange data on
small particles, called isothermal isotope exchange (IIE), that treats a
powder sample like a packed bed, inferring rates of exchange and
transport through analysis of isotope concentrations flowing through
the bed [16]. But even this innovative technique may reach physical
limits depending on material properties.

It may also be possible to increase confidence in estimates using a
number of measurements in different co-limited regimes and a sophis-
ticated statistical approach. Toward this goal, Ciucci has extended the
OED formalism to both IE-SIMS [10] and ECR [11] experiments. This is
a powerful methodology that demonstrates the potential for statistical
analysis to extract rich information from standard experiments. The
OED technique relies, however, on a linearization of the cost function
in its estimates of parameter uncertainty. While this is not a significant
impediment to theminimization of uncertainty that is the focus of OED,
the work of Li, et al., in which the cost function for ECR analysis was
mapped in parameter space, demonstrates that the nonlinearity of the
function may lead to higher moments in the posterior distributions for
the estimated parameters [17]. It is therefore warranted to introduce a
method for uncertainty quantification and propagation in IE-SIMS and
ECR that retains nonlinearities in the cost functions.

A fully Bayesian approach to model calibration is presented and
demonstrated in this work for both IE-SIMS and ECR. It can be used in
tandem with an approach to experimental design such as OED, or as a
standalone method for uncertainty quantification. The method is rela-
tively straightforward theoretically, and its numerical implementation
well-suited for packaging and distribution as software.

2. Theory and implementation

2.1. Bayesian calibration

The Bayesian approach to calibration [18,19] arises from the philos-
ophy of epistemic uncertainty. This views the parameters of interest θ as
possessing a single true value which is unknown, and a probability dis-
tribution quantifies beliefs about what the parameters are. Thus Bayes'
theorem – in fact a quite general result derived from basic probability
theory – takes on the role of a transformation from a prior probability
distribution existing before data is considered to a posterior distribution
which takes data into account. A useful representation of Bayes'
theorem is

Ω θjBð Þ ¼ L Bjθð Þp θð Þ
Z

L Bjθð Þp θð Þdθ
� �−1

: ð1Þ

Here Ω is the posterior distribution for the parameters θ = {k*, D*}
given the data B, L, called the likelihood function, is the probability of
obtaining the data B given a parameter set, and p is the prior distribu-
tion. The likelihood may be understood in terms of a stochastic model
for the data. In this case we use

B ¼ Y θð Þ þ ϵ ψð Þ ð2Þ

where Y is the deterministic model pertaining to the experiment, and ϵ
is Gaussianwhite noisewith varianceψ. Given a dataset B, the difference
between the model and dataset B − Y(θ) is thus independently and
identically normally distributed, with mean zero and covariance equal
to the identity times ψ:

L θjBð Þ ¼ 1
2πð ÞN=2ψN=2 exp − B−Y θð Þð ÞT B−Y θð Þð Þ

2ψ

" #
: ð3Þ

Ideally, the observation error variance ψwould be known and fixed.
However, this is generally not the case— indeed, the source and extent
of errors may be known a priori only vaguely. It is therefore useful to
estimate ψ at the same time as k* and D*. Eq. (1) is then rewritten as

Ω θ;ψjBð Þ ¼ L Bjθ;ψð Þp θð Þp ψð Þ
Z

L Bjθ;ψð Þp θð Þp ψð Þdθdψ
� �−1

ð4Þ

and the posterior is now a joint distribution over θ andψ. Integration over
ψ then recovers a distribution joint over just the physical parameters k*
and D*.

Prior distributions for k* and D* can be anything physically justifi-
able. Generally it will be relatively easy to justify strict bounds on both
parameters — a uniform distribution is the simplest distribution incor-
porating such bounds, and is the type of prior distribution that will be
used in the rest of this work for both physical parameters. If the bounds
do not intersect the heart of the posterior distribution, then such priors
are deemed “uninformative” — that is, they do not influence the esti-
mate of parameters at all. Informative priors for the physical parameters
may arise through prior experience or through ab initio calculations
[19]. However, uninformative priors were used in the present study.

For ψ, it is computationally advantageous to use an inverse gamma
(IG) prior, since the IG distribution is “conjugate” to the likelihood
(Eq. (3)) for fixed θ, meaning that there is an analytical solution for
the conditional posterior distribution given θ. The support of the IG
distribution is also strictly positive, which is in accord with the strictly
positive nature of the variance. Parameters for the IG distribution
may be estimated through knowledge of the sources of error in the
experiments, or broad “vaguely informative” prior distributions may
be employed, which allows the data to dominate the estimation of the
parameter. This study conforms to the latter case.

2.2. Models

Models applied to both IE-SIMS and ECR datasets were the appropri-
ate analytical solutions to the linearized one-dimensional semi-infinite
reaction–diffusion model as found in Crank [20]. For IE-SIMS, this is

c xð Þ−cb
cg−cb

¼ erfc
x

2
ffiffiffiffiffiffiffiffi
D�t

p
� �

−exp lxþ l2D�t
� �

erfc
x

2
ffiffiffiffiffiffiffiffi
D�t

p þ l
ffiffiffiffiffiffiffiffi
D�t

p� �
ð5Þ

where l = k*/D*, c(x) is the isotope fraction at a distance x away from
the surface, cg is the isotope fraction in the enriched gas, and cb is the
background isotope fraction. For ECR, the model frequently pertains to
a parallelepiped geometry [5]:

σ tð Þ−σ∞
σ0−σ∞

¼ 1−
X∞
i¼1

X∞
j¼1

X∞
k¼1

2l1exp −β2
1iD

�t=x21
� �

β2
1i β

2
1i þ l21 þ l2

	 
 2l2exp −β2
2 jD

�t=x22
� �

β2
2 j β2

2 j þ l22 þ l2
� �

�
2l3exp −β2

3kD
�t=x23

� �
β2
3k β2

3k þ l23 þ l3
	 


ð6Þ

where σ(t) is themeasured conductivity at time t, σ0 is the conductivity
before the pO2 change, and σ∞ is the conductivity at an infinite
time after the pO2 change; xp is the half-width of the sample in
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