Contents lists available at ScienceDirect

Solid State Ionics

journal homepage: www.elsevier.com/locate/ssi

Atomistic investigation of the nanoparticle size and shape effects on ionic conductivity of solid polymer electrolytes

Qin Li, Haleh Ardebili *

Mechanical Engineering Department, University of Houston, Houston, TX 77004, USA

ARTICLE INFO

ABSTRACT

Article history: Received 25 April 2014 Received in revised form 12 October 2014 Accepted 12 October 2014 Available online 8 November 2014

Keywords: Polymer electrolyte Nanofiller Molecular dynamics

1. Introduction

Solid polymer electrolytes (SPEs) and polymer gel electrolytes (PGEs) have attracted intensive studies during the past decades due to their potential applications in various advanced devices including lithium ion batteries [1–3], supercapacitors [4], and stretchable actuators [5]. Compared to the traditional organic liquid electrolytes used in Li ion batteries, SPEs offer enhanced safety, stability and thin film manufacturability but their low ionic conductivity especially at room temperature has suppressed their development [6,7]. One effective method to improve the ionic conductivity introduced by Croce et al. [8] is adding nanosized fillers into SPE to form the polymer nanocomposite electrolyte (PNCE) which can produce up to three orders of magnitude enhancement. Beside the common spherical shape. nanofillers with other shapes like rod [9], sheet [10], and hybrid [11], have also been utilized to obtain higher ionic conductivities. The reasons for the nanofiller induced increase in the ionic conductivity of polymer electrolyte are still not fully understood. Ionic conductivity generally depends on the concentration and mobility of the conductive ions. Recent experiments have demonstrated that nanofillers can facilitate the Li salt dissociation [12-14] and therefore, increase Li ion concentration. Furthermore, experiments have shown that nanofillers disrupt the recrystallization of polymer matrix and consequently, increase the amorphous regions in the polymer matrix where the Li ion mobility is relatively higher [15,16]. However, at higher filler concentrations, adverse effects of nanofillers can dominate including aggregation, ion trapping, increased crystallinity, and constriction of polymer mobility [17–19] leading to the decline in ion conductivity.

* Corresponding author. E-mail address: hardebil@central.uh.edu (H. Ardebili). Although a few studies have proposed models that provide interesting insights into the mechanisms of conductivity improvement in PNCEs [19,20], the effects of nanofiller's shape and size however remain unclear.

Adding nanoparticle fillers is a potential route to enhance room temperature ionic conductivity of solid polymer

electrolytes. In this work, we use molecular dynamics simulation to elucidate the role of nano-scale filler size and

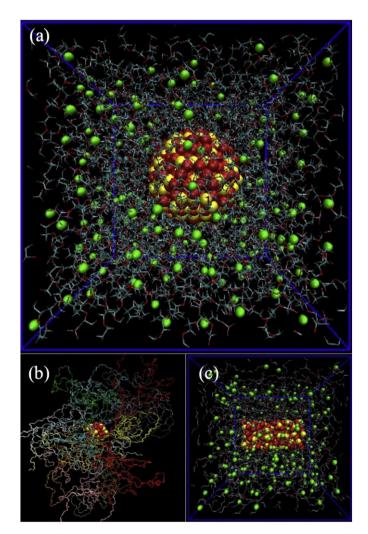
shape on ionic conductivity. Our key conclusions are that the addition of nanofillers can affect the salt dissocia-

tion, lithium-ion mobility, and the dynamics of polymer chains. The repulsive nanofillers of different sizes appear

to suppress ion-cluster formation and enhance lithium ion mobility. Smaller size nanofillers are found to be comparatively more effective in increasing the mobility of lithium ions while shape effects appear to be insignificant.

> Molecular dynamics (MD) simulation is a powerful tool that can provide us insights at the molecular level on the phenomena of interest. MD simulations of polymer composites have traditionally focused on mechanical properties [21-27]. For example, some of the aforementioned works have shown that the nature of filler surface (attractive, repulsive or neutral) can play an important role in the composite mechanical properties. Also, the perturbed confinement of polymer chains near the solid surface has been investigated in the past. [28-30] Our interest is in the atomistic investigation of ionic conductivity in polymer electrolytes-which generally are comprised of the polymer host and the alkali metal salt. For example, Sigueira and Ribeiro performed united atom MD simulations of polyethylene oxide (PEO)/LiClO₄ system [31,32] to reveal the temperature and salt concentration effects on both static and dynamic properties. Other works have targeted the same system but focused on ion pairing and lithium ion hopping process [33,34]. PEO hosts doped with different salts have also been investigated [35-49]. MD simulations have also been used to analyze polymer nanocomposite electrolytes. These works concluded that incorporation of titania and alumina fillers did not show direct evidence of ionic conductivity enhancement. In fact, the dynamics of the PEO chains and the charge carriers were found to be slowed down by the nanofillers [50–54]. There are also other polymer-based electrolytes [55–61] like the polymer/ionic liquid mixture [59,60] and copolymer single ion conductor [61] that have been investigated by MD simulations.

> In this work, we focus on using molecular dynamics simulation to understand the shape and size effects of nanofillers on the ionic conductivity of solid polymer electrolytes. Specifically, we consider $PEO/LiClO_4$ solid electrolyte with EO:Li ratio of 10:1, with and without TiO_2 nanofillers.


© 2014 Elsevier B.V. All rights reserved.

2. Simulation details

We created a relatively long PEO chain with 200 CH_2CH_2O repeat units capped by methyl groups in both ends. 200 $LiClO_4$ molecules are doped into 10 such PEO chains in the form of disassociated ions corresponding to the ratio between ether oxygen (EO) atoms and lithium ions (EO:Li) at 10:1. All atoms were wrapped into a periodic simulation cell with the side length of about 50 Å. That was the case without nanofiller denoted by PEL Based on the PEL case, we made a void in the center of the simulation box by pushing PEO and $LiClO_4$ atoms in the central region away and placed the TiO₂ nanofiller inside to form our desired nanocomposite. The position of the nanofiller was fixed during the simulations to approximate the behavior of solid polymer nanocomposites.

In order to investigate the influence of nanofiller's shape and size we created 3 nanofillers. Two spherical TiO_2 nanofillers with diameters of about 2.4 nm and 1.2 nm and a rod-like nanofiller with a diameter of 1.5 nm and height of 4 nm were cut from a bulk TiO_2 crystal (rutile). The dimensions of the rod-like nanofiller are chosen to ensure the same volume as that of the larger spherical nanofiller. Some surface atoms were removed to make the ratio of Ti:O = 1:2. For convenience, hereafter we name the simulation case with the larger spherical nanofiller PNC1(2.4), the simulation case with the smaller spherical nanofiller PNC2(1.2) and the one with the rod-like filler PNC3(rod). In addition, we created two other simulation cases by modifying the Li ion-nanofiller and PEO-nanofiller interactions in PNC1(2.4) and

Fig. 1. Simulation cases of PNC1(2.4) (a), PNC2(1.2) (b), and PNC3(rod) (c) visualized by VMD. Lithium ions and nanofiller atoms are shown in solid spheres. PEO chains (different chains are classified by different colors) are shown in their original configurations in (b).

PNC2(1.2) to purely repulsive by setting the attraction terms in the force field to zero (in experiments this could be done by chemical functionalization of the nanofiller's surface) and we call these new cases PNC1-SR and PNC2-SR, respectively. Such artificial filler surfaces have been used in a previous MD study [50].

Fig. 1 shows three of our simulation cases PNC1(2.4) (a), PNC2(1.2) (b), and PNC3(rod) (c). The simulation cases are visualized using the Visual Molecular Dynamics (VMD) [62]. Due to the complexity of the

Table 1

The force field parameters used in this study

Bonds	K	r ₀ (Å)		
DOLLAS	K _{ij} (kcal mol ⁻¹ Å ⁻²)	10(A)		
C–C	309.194	1.513		
C-0	369.733	1.390		
C-H	327.717	1.090		
Cl-O	350.000	1.440		
Angles	K_{ijk}	$\Theta_0(\text{deg})$		
	$(kcal mol^{-1} rad^{-2})$			
С-С-Н	42.924	98.400		
Н-С-Н	38.551	93.400		
0-C-C	59.535	96.500		
0-С-Н	56.034 74.544	100.800		
C-O-C		107.100		
0-Cl-0	100.000	109.500		
Dihedrals	<i>K</i> ₁	K ₂	<i>K</i> ₃	K4
	(kcal mol^{-1})	$(kcal mol^{-1})$	$(kcal mol^{-1})$	$(kcal mol^{-1})$
0-С-С-Н	0.278	0.000	0.000	-0.278
Н-С-С-Н	0.278	0.000	0.000	-0.278
С-О-С-Н	0.808	0.000	0.000	-0.808
0-C-C-O	2.602	0.050	-2.552	0.000
C-O-C-C	2.021	-1.001	-0.701	-0.320
Non-bonded	A_{ij} (kcal mol ⁻¹) or	B_{ij} (Å ⁻¹)	C _{ii}	
	A'_{ij} (kcal mol ⁻¹ Å ¹²)	ij, Ţ	$(\text{kcal mol}^{-1} \text{ Å}^6)$	
H–H	2651.299	0.267	27.389	
H–C	4322.793	0.293	138.332	
H-O _{PEO}	14,185.128	0.256	104.539	
H–Li	5002.437	0.192	0.000	
H–Cl	5284.667	0.297	207.110	
H-O _{LiClO4}	5284.928	0.276	86.977	
H–Ti	88,630.000 ^a	N/A	32.000	
H-O _{TiO2}	14,175.980	0.256	103.950	
C–C	14,985.539	0.324	641.213	
C-O _{PEO}	33,724.143	0.280	505.891	
C–Li	22,380.760	0.211	0.000	
C–Cl	29,407.119	0.327	1002.098	
C-O _{LiClO4}	29,415.215	0.304	420.836	
C-Ti	125,000.000 ^a	N/A	496.000	
C 0				
C-O _{TiO2}	33,702.400	0.280	503.040	
$O_{PEO}-O_{PEO}$	75,893.733	0.246	399.130	
O _{PEO} -O _{PEO} O _{PEO} -Li	75,893.733 55,853.769	0.246 0.184	399.130 0.000	
O _{PEO} -O _{PEO} O _{PEO} -Li O _{PEO} -Cl	75,893.733 55,853.769 138,350.274	0.246 0.184 0.285	399.130 0.000 790.617	
$\begin{array}{l} O_{PEO}-O_{PEO}\\ O_{PEO}-Li\\ O_{PEO}-Cl\\ O_{PEO}-O_{LiCIO4} \end{array}$	75,893.733 55,853.769 138,350.274 138,529.656	0.246 0.184 0.285 0.265	399.130 0.000 790.617 332.024	
$\begin{array}{l} O_{PEO}-O_{PEO}\\ O_{PEO}-Li\\ O_{PEO}-Cl\\ O_{PEO}-O_{LiClO4}\\ O_{PEO}-Ti\\ \end{array}$	75,893.733 55,853.769 138,350.274 138,529.656 97,622.000 ^a	0.246 0.184 0.285 0.265 N/A	399.130 0.000 790.617 332.024 32.000	
$\begin{array}{l} O_{PEO}-O_{PEO}\\ O_{PEO}-Li\\ O_{PEO}-Cl\\ O_{PEO}-O_{LiClO4}\\ O_{PEO}-Ti\\ O_{PEO}-O_{TiO2} \end{array}$	75,893.733 55,853.769 138,350.274 138,529.656 97,622.000 ^a 75,844.800	0.246 0.184 0.285 0.265 N/A 0.246	399.130 0.000 790.617 332.024 32.000 396.890	
$\begin{array}{l} O_{PEO}-O_{PEO}\\ O_{PEO}-Li\\ O_{PEO}-Cl\\ O_{PEO}-O_{LiClO4}\\ O_{PEO}-Ti\\ O_{PEO}-O_{TiO2}\\ Li-Li \end{array}$	75,893.733 55,853.769 138,350.274 138,529.656 97,622.000 ^a 75,844.800 44,186.257	0.246 0.184 0.285 0.265 N/A 0.246 0.137	399.130 0.000 790.617 332.024 32.000 396.890 0.000	
$\begin{array}{l} O_{PEO}-O_{PEO}\\ O_{PEO}-Li\\ O_{PEO}-Cl\\ O_{PEO}-O_{LiClO4}\\ O_{PEO}-Ti\\ O_{PEO}-O_{TiO2}\\ Li-Li\\ Li-Cl\\ \end{array}$	75,893.733 55,853.769 138,350.274 138,529.656 97,622.000 ^a 75,844.800 44,186.257 83,642.765	0.246 0.184 0.285 0.265 N/A 0.246 0.137 0.213	399.130 0.000 790.617 332.024 32.000 396.890 0.000 0.000	
$\begin{array}{l} O_{PEO} - O_{PEO} \\ O_{PEO} - Li \\ O_{PEO} - Cl \\ O_{PEO} - O_{LiClO4} \\ O_{PEO} - Ti \\ O_{PEO} - O_{TiO2} \\ Li - Li \\ Li - Cl \\ Li - O_{LiClO4} \end{array}$	75,893.733 55,853.769 138,350.274 138,529.656 97,622.000 ^a 75,844.800 44,186.257 83,642.765 83,708.296	0.246 0.184 0.285 0.265 N/A 0.246 0.137 0.213 0.198	399.130 0.000 790.617 332.024 32.000 396.890 0.000 0.000 0.000	
$\begin{array}{l} O_{PEO}-O_{PEO}\\ O_{PEO}-Li\\ O_{PEO}-Cl\\ O_{PEO}-O_{LiClO4}\\ O_{PEO}-Ti\\ O_{PEO}-O_{TiO2}\\ Li-Li\\ Li-Cl\\ Li-Cl\\ Li-O_{LiClO4}\\ Li-Ti\\ \end{array}$	75,893.733 55,853.769 138,350.274 138,529.656 97,622.000 ^a 75,844.800 44,186.257 83,642.765 83,708.296 83,247.274	0.246 0.184 0.285 0.265 N/A 0.246 0.137 0.213 0.213 0.198 0.145	399.130 0.000 790.617 332.024 32.000 396.890 0.000 0.000 0.000 0.000	
$\begin{array}{l} O_{PEO}-O_{PEO}\\ O_{PEO}-Li\\ O_{PEO}-Cl\\ O_{PEO}-O_{LiCIO4}\\ O_{PEO}-O_{TiO2}\\ Li-Li\\ Li-Cl\\ Li-Cl\\ Li-Cl\\ Li-Cl\\ Li-Ti\\ Li-O_{TiO2}\\ \end{array}$	75,893.733 55,853.769 138,350.274 138,529.656 97,622.000 ^a 75,844.800 44,186.257 83,642.765 83,708.296 83,247.274 76,010.943	0.246 0.184 0.285 0.265 N/A 0.246 0.137 0.213 0.213 0.198 0.145 0.179	399.130 0.000 790.617 332.024 32.000 396.890 0.000 0.000 0.000 0.000 0.000	
$\begin{array}{l} O_{PEO} - O_{PEO} \\ O_{PEO} - Li \\ O_{PEO} - Cl \\ O_{PEO} - O_{LiCIO4} \\ O_{PEO} - O_{TiO2} \\ Li - Li \\ Li - Cl \\ Li - Cl \\ Li - Cl \\ Li - Ti \\ Li - O_{TiO2} \\ Cl - Cl \\ \end{array}$	75,893.733 55,853.769 138,350.274 138,529.656 97,622.000 ³ 75,844.800 44,186.257 83,642.765 83,708.296 83,247.274 76,010.943 781,407.189	0.246 0.184 0.285 0.265 N/A 0.246 0.137 0.213 0.198 0.145 0.179 0.330	399.130 0.000 790.617 332.024 32.000 396.890 0.000 0.000 0.000 0.000 0.000 1566.093	
$\begin{array}{l} O_{PEO} - O_{PEO} \\ O_{PEO} - Li \\ O_{PEO} - Cl \\ O_{PEO} - O_{LiCIO4} \\ O_{PEO} - O_{TiO2} \\ Li - Li \\ Li - Cl \\ Li - Cl \\ Li - Cl \\ Li - Ti \\ Li - O_{LiCIO4} \\ Li - Ti \\ Cl - Cl \\ Cl - O_{LiCIO4} \end{array}$	75,893.733 55,853.769 138,350.274 138,529.656 97,622.000 ^a 75,844.800 44,186.257 83,642.765 83,708.296 83,247.274 76,010.943 781,407.189 787,164.229	0.246 0.184 0.285 0.265 N/A 0.246 0.137 0.213 0.198 0.145 0.179 0.330 0.307	399.130 0.000 790.617 332.024 32.000 396.890 0.000 0.000 0.000 0.000 1566.093 657.689	
$\begin{array}{l} O_{PEO} - O_{PEO} \\ O_{PEO} - Li \\ O_{PEO} - Cl \\ O_{PEO} - O_{LiCIO4} \\ O_{PEO} - Ti \\ O_{PEO} - O_{TiO2} \\ Li - Li \\ Li - Cl \\ Li - O_{LiCIO4} \\ Li - Ti \\ Li - O_{TiO2} \\ Cl - Cl \\ Cl - O_{LiCIO4} \\ Cl - Ti \\ \end{array}$	75,893.733 55,853.769 138,350.274 138,529.656 97,622.000 ³ 75,844.800 44,186.257 83,642.765 83,708.296 83,247.274 76,010.943 781,407.189 787,164.229 748,199.920	0.246 0.184 0.285 0.265 N/A 0.246 0.137 0.213 0.198 0.145 0.179 0.330 0.307 0.225	399.130 0.000 790.617 332.024 32.000 396.890 0.000 0.000 0.000 0.000 1566.093 657.689 435.313	
$\begin{array}{l} O_{PEO} - O_{PEO} \\ O_{PEO} - Li \\ O_{PEO} - Cl \\ O_{PEO} - O_{LiCIO4} \\ O_{PEO} - Ti \\ O_{PEO} - O_{TiO2} \\ Li - Li \\ Li - Cl \\ Li - Cl \\ Li - O_{LiCIO4} \\ Li - Ti \\ Li - O_{TiO2} \\ Cl - Cl \\ Cl - O_{LiCIO4} \\ Cl - Ti \\ Cl - O_{TiO2} \end{array}$	75,893.733 55,853.769 138,350.274 138,529.656 97,622.000 ^a 75,844.800 44,186.257 83,642.765 83,708.296 83,247.274 76,010.943 781,407.189 787,164.229 748,199.920 403,203.654	0.246 0.184 0.285 0.265 N/A 0.246 0.137 0.213 0.198 0.145 0.145 0.330 0.307 0.225 0.278	399.130 0.000 790.617 332.024 32.000 396.890 0.000 0.000 0.000 0.000 1566.093 657.689 435.313 1044.706	
$\begin{array}{l} O_{PEO} - O_{PEO} \\ O_{PEO} - Li \\ O_{PEO} - Cl \\ O_{PEO} - O_{LiCIO4} \\ O_{PEO} - O_{TiO2} \\ Li - Li \\ Li - Cl \\ Li - Cl \\ Li - Cl \\ Li - Ti \\ Li - O_{TiO2} \\ Cl - Cl \\ Cl - O_{TiO2} \\ Cl - O_{TiO2} \\ Cl - O_{TiO2} \\ O_{LiCIO4} - O_{LiCIO4} \\ \end{array}$	75,893.733 55,853.769 138,350.274 138,529.656 97,622.000 ^a 75,844.800 44,186.257 83,642.765 83,708.296 83,247.274 76,010.943 781,407.189 787,164.229 748,199.920 403,203.654 793,006.730	0.246 0.184 0.285 0.265 N/A 0.246 0.137 0.213 0.198 0.145 0.145 0.179 0.330 0.307 0.225 0.278 0.285	399.130 0.000 790.617 332.024 32.000 396.890 0.000 0.000 0.000 0.000 0.000 1566.093 657.689 435.313 1044.706 276.200	
$\begin{array}{l} O_{PEO}-O_{PEO}\\ O_{PEO}-Li\\ O_{PEO}-Cl\\ O_{PEO}-O_{LiCIO4}\\ O_{PEO}-Ti\\ O_{PEO}-Ti\\ Li-Li\\ Li-Li\\ Li-Cl\\ Li-Cl\\ Li-O_{LiCIO4}\\ Li-Ti\\ Li-O_{TiO2}\\ Cl-Cl\\ Cl-O_{LiCIO4}\\ Cl-Ti\\ Cl-O_{TiO2}\\ O_{LiCIO4}-O_{LiCIO4}\\ O_{LiCIO4}-Ti\\ \end{array}$	75,893.733 55,853.769 138,350.274 138,529.656 97,622.000 ^a 75,844.800 44,186.257 83,642.765 83,708.296 83,247.274 76,010.943 781,407.189 787,164.229 748,199.920 403,203.654 793,006.730 753,476.394	0.246 0.184 0.285 0.265 N/A 0.246 0.137 0.213 0.198 0.145 0.179 0.330 0.307 0.225 0.278 0.278 0.285 0.210	399.130 0.000 790.617 332.024 32.000 396.890 0.000 0.000 0.000 0.000 0.000 1566.093 657.689 435.313 1044.706 276.200 182.812	
$\begin{array}{l} O_{PEO} - O_{PEO} \\ O_{PEO} - Li \\ O_{PEO} - O_{LiCIO4} \\ O_{PEO} - O_{LiCIO4} \\ O_{PEO} - O_{TiO2} \\ Li - Li \\ Li - Cl \\ Li - Cl \\ Li - O_{LiCIO4} \\ Li - Ti \\ Cl - O_{TiO2} \\ Cl - Cl \\ Cl - O_{LiCIO4} \\ Cl - Ti \\ Cl - O_{TiO2} \\ O_{LiCIO4} - O_{LiCIO4} \\ O_{LiCIO4} - Ti \\ O_{LiCIO4} - O_{TiO2} \end{array}$	75,893.733 55,853.769 138,350.274 138,529.656 97,622.000 ^a 75,844.800 44,186.257 83,642.765 83,708.296 83,247.274 76,010.943 781,407.189 787,164.229 748,199.920 403,203.654 793,006.730 753,476.394 404,731.035	0.246 0.184 0.285 0.265 N/A 0.246 0.137 0.213 0.198 0.145 0.179 0.330 0.307 0.225 0.278 0.285 0.210 0.258	399.130 0.000 790.617 332.024 32.000 396.890 0.000 0.000 0.000 0.000 1566.093 657.689 435.313 1044.706 276.200 182.812 438.730	
$\begin{array}{l} O_{PEO}{-}O_{PEO}{-}Li \\ O_{PEO}{-}Cl \\ O_{PEO}{-}O_{LiCIO4} \\ O_{PEO}{-}O_{TiO2} \\ Li{-}Li \\ Li{-}Cl \\ Li{-}Cl \\ Li{-}Cl \\ Li{-}O_{IiCO4} \\ Li{-}Ti \\ Li{-}O_{IiCO4} \\ Cl{-}Cl \\ Cl{-}O_{LiCIO4} \\ Cl{-}Ti \\ Cl{-}O_{TiO2} \\ O_{LiCIO4}{-}O_{LiCO4} \\ O_{LiCIO4}{-}O_{TiO2} \\ O_{LiCIO4}{-}O_{TiO2} \\ O_{LiCIO4}{-}O_{TiO2} \\ O_{LiCIO4}{-}O_{TiO2} \\ Ti{-}Ti \end{array}$	75,893.733 55,853.769 138,350.274 138,529.656 97,622.000 ^a 75,844.800 44,186.257 83,642.765 83,708.296 83,247.274 76,010.943 781,407.189 787,164.229 748,199.920 403,203.654 793,006.730 753,476.394 404,731.035 717,700.000	0.246 0.184 0.285 0.265 N/A 0.246 0.137 0.213 0.198 0.145 0.179 0.330 0.307 0.225 0.278 0.285 0.210 0.258 0.210	399.130 0.000 790.617 332.024 32.000 396.890 0.000 0.000 0.000 1566.093 657.689 435.313 1044.706 276.200 182.812 438.730 121.000	
$\begin{array}{l} O_{PEO} - O_{PEO} \\ O_{PEO} - Li \\ O_{PEO} - O_{LiCIO4} \\ O_{PEO} - O_{LiCIO4} \\ O_{PEO} - O_{TiO2} \\ Li - Li \\ Li - Cl \\ Li - Cl \\ Li - O_{LiCIO4} \\ Li - Ti \\ Cl - O_{TiO2} \\ Cl - Cl \\ Cl - O_{LiCIO4} \\ Cl - Ti \\ Cl - O_{TiO2} \\ O_{LiCIO4} - O_{LiCIO4} \\ O_{LiCIO4} - Ti \\ O_{LiCIO4} - O_{TiO2} \end{array}$	75,893.733 55,853.769 138,350.274 138,529.656 97,622.000 ^a 75,844.800 44,186.257 83,642.765 83,708.296 83,247.274 76,010.943 781,407.189 787,164.229 748,199.920 403,203.654 793,006.730 753,476.394 404,731.035	0.246 0.184 0.285 0.265 N/A 0.246 0.137 0.213 0.198 0.145 0.179 0.330 0.307 0.225 0.278 0.285 0.210 0.258	399.130 0.000 790.617 332.024 32.000 396.890 0.000 0.000 0.000 0.000 1566.093 657.689 435.313 1044.706 276.200 182.812 438.730	

^a The value is for the parameter A'_{ij}.

Download English Version:

https://daneshyari.com/en/article/1295376

Download Persian Version:

https://daneshyari.com/article/1295376

Daneshyari.com