Contents lists available at ScienceDirect

Solid State Ionics

journal homepage: <www.elsevier.com/locate/ssi>

A novel layered lithium niobium titanate as battery anode material: Crystal structure and charge-discharge properties

SOLID STATE IONIC

Michele Catti ⁎, Ilya Pinus, Riccardo Ruffo, Matteo M. Salamone, Claudio M. Mari

Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, via Cozzi 55, 20125 Milano, Italy

article info abstract

Article history: Received 20 April 2016 Received in revised form 1 August 2016 Accepted 1 August 2016 Available online xxxx

Keywords: LiTi₂NbO₇ Anode material Neutron diffraction Lithium ion batteries

LiTi₂NbO₇ was synthesized from CsTi₂NbO₇ by direct Cs⁺/Li⁺ ion exchange and subsequent thermal decomposition of the hydrated form. Neutron powder diffraction data were collected at high-resolution (ILL, France) and analyzed by Rietveld refinements and Fourier difference techniques, revealing a layer-like crystal structure (orthorhombic Pbnm, $a = 9.2476(6)$, $b = 16.955(2)$, $c = 3.7542(2)$ Å) partly similar to that of monoclinic LiTi₃O₇. Lithium is tetrahedrically coordinated and bridges adjacent layers of $(Ti,Nb)O₆$ octahedra. Nb atoms are strongly ordered in one of the three independent sites available for Ti/Nb, thus compensating for the unbalance of negative charge from the surrounding O atoms. Electrochemical measurements were performed on a LiTi₂NbO₇ electrode vs. Li/Li⁺ couple. Overlapping $Ti^4 + / Ti^3 +$ and $Nb^5 + / Nb^{4+}$ redox processes occur around 1.4 V, with a specific charge of 245 mAh/g (about 2.8 electrons per f.u.) in the 2.30 to 1.15 V range. Charge-discharge cycling results show a reversible and stable specific capacity of 220 mAh/g at low current density, indicating that this material is a promising alternative to $Li₄Ti₅O₁₂$ spinel for reversible anode applications in lithium batteries.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The standard $LiC₆$ anode of lithium batteries is well known to raise serious safety issues. These are mainly related to possible growth of lithium dendrites, which may produce short-circuits with risk of firing the carbonate electrolyte [\[1,2\].](#page--1-0) Thus, on searching for alternative anode materials a lot of research efforts have been focused on transition metal oxides with cathodic potentials around $1.0-1.5$ V vs. Li/Li⁺, which can be used as anode materials vs. high-voltage (4.0 to 5.0 V) oxide cathodes and still provide an interesting electric power [\[3](#page--1-0)–5]. In this respect, a number of lithium titanium oxide materials have been investigated because of the suitable Ti^{4+}/Ti^{3+} reduction potential, which is observed to range around 1.5 V against lithium [\[6\]](#page--1-0). Some significant examples are TiO₂ [\[7\],](#page--1-0) LiTi₂O₄ in the anatase [\[8\]](#page--1-0) and spinel-like [\[8,9\]](#page--1-0) modifications, and $Li₄Ti₅O₁₂$ with spinel structure [9–[11\]](#page--1-0). The latter material, in particular, shows a quite good reversibility in charge-discharge operation, and it is already liable to industrial applications. Also niobium oxides were investigated as anode materials, since the Nb^{5+}/Nb^{4+} potential is similar to that of the titanium couple, but lower niobium oxidation states are also available for further redox reaction steps: thus, in principle a larger capacity per atom could be attained [\[12](#page--1-0)–14].

Quite recently, the research was extended to the mixed titaniumniobium oxide TiNb₂O₇, which showed very satisfactory properties of lithium intercalation. A reversible capacity of 285 mAh/g was demonstrated in the 1.0 to 2.0 V range [15–[17\],](#page--1-0) corresponding to insertion of

3.6 Li atoms per formula unit (f.u.), and even better performances could be obtained by use of nanomaterial fabrication techniques [18–[22\].](#page--1-0) The mechanism of Li intercalation into this material was also elucidated by determining the lithium atom distribution in the perovskite-related crystal structure of $Li_xTiNb₂O₇$, and by analyzing its electronic properties [\[23\].](#page--1-0) Lithium was successfully inserted electrochemically also in the LiTiNbO₅ compound $[24]$ with a completely different layer-like structural topology.

We thus decided to explore the atomic arrangement and electrochemical behaviour of other compounds in the Li,Ti,Nb,O system, focussing on the LiTi₂NbO₇ material. This was reported to have been synthesized from CsTi₂NbO₇ by double ion exchange (Cs⁺ to H⁺ to $Li⁺$) in water solution [\[25\],](#page--1-0) but its chemical and physical properties were not characterized in detail. The orthorhombic crystal structure of the caesium compound, on the other hand, was determined [\[26\]](#page--1-0), and despite the different symmetry it shows a similar layer-like configuration as that of monoclinic $Li₂Ti₃O₇$ [\[27\]](#page--1-0). An investigation of LiTi₂NbO₇ was therefore undertaken, with the aims of (i) finding a simpler synthesis route by direct ion exchange from $CSTi_2NbO_7$, (ii) determining the crystal structure and lithium location by high-resolution neutron diffraction, and (iii) assessing the ability of the material to intercalate lithium atoms reversibly against a Li anode, so as to operate successfully as an electrode in rechargeable batteries.

2. Experimental

2.1. Synthesis, X-ray and neutron diffraction

The $Nb₂O₅$ reagent was prepared by thermal treatment of the commercial (Sigma-Aldrich) orthorhombic product at 1200 °C for 24 h [\[12\]](#page--1-0), so as to get the more reactive monoclinic phase, then it was quenched in liquid N_2 . Cs₂CO₃ was dried at 350 °C for 1 h and then mixed with $TiO₂$ and $Nb₂O₅$ in 1:4:1 M ratio. The ground and pelletized powder was annealed at 1050 °C for 20 h in a Pt crucible and subsequently quenched in air. The obtained sample proved to be pure orthorhombic CsTi2NbO7 by X-ray diffraction analysis (Bruker D8 Advance equipment, CuK α radiation): $a = 9.326$, $b = 18.412$, $c = 3.798$ Å, space group Pnam.

Ion exchange was performed on $CsTi₂NbO₇$ in a 4 M solution of LiNO₃ at 50 °C for 8 days, changing solution every 2 days. By atomic emission flame photometry the alkali composition $Li_{0.98}Cs_{0.02}$ was determined for the compound obtained; the small amount of residual caesium will be neglected henceforth. The fresh product and that kept in air for 12 h were analyzed by thermogravimetry to measure the water content (Fig. 1). After the initial removal of different amounts of superficial water below 60 °C, in both cases a weight loss of about 5.0% is observed in the 200 to 270 °C thermal range. This corresponds to $n = 0.91$ in the chemical formula LiTi₂NbO₇.nH₂O, indicating the presence of approximately one structural $H₂O$ molecule per formula unit.

X-ray diffraction patterns (PANalytical diffractometer, CuKα radiation) were recorded both on fresh LiTi₂NbO₇ H_2O and on the dehydrated sample obtained by annealing at 350 °C for 1 h (Fig. 2). In both cases protection against water absorption was assured by kapton film covering of the specimens. The pattern of the hydrated compound is similar to that of the parent caesium salt; its unit-cell was refined to $a = 9.277(1)$, $b = 18.228(3)$, $c = 3.7616(5)$ Å, confirming the *Pnam* space group $[25,26]$. Anhydrous LiTi₂NbO₇, on the other hand, shows a significantly different diffractogram, which could not be indexed correspondingly. By use of the DICVOL indexing code [\[28\],](#page--1-0) and taking into account the systematic absences of reflections, the lattice parameters $a =$ 9.263(4), $b = 16.948(8)$, $c = 3.757(1)$ Å were obtained with *Pbnm* symmetry. It appears that, on dehydration, the a and c constants change little, but the b one is shortened very much as a consequence of the interlayer water removal.

Neutron diffraction measurements for LiTi₂NbO₇ were performed on the high-resolution ($\Delta d/d = 5 \times 10^{-4}$) D2B powder diffractometer at the reactor source of the Institut-Laue-Langevin (Grenoble, France). A primary beam monochromator set at $\lambda = 1.5957$ Å was employed.

Fig. 1. Thermogravimetric analysis of $LiTi₂NbO₇ nH₂O$: (a) fresh sample obtained by ion exchange of $CsTi₂NbO₇$; (b) after 12 h in air.

Fig. 2. X-ray powder patterns (CuK α radiation) of the fresh hydrated (below) and dehydrated (above) samples of lithium dititanium niobium oxide.

The sample was put in a vanadium can, sealed with indium wire in Ar atmosphere for protection against hydration. Measurements were carried out in the $5-160^{\circ}$ 2 θ range.

The GSAS computer code [\[29\]](#page--1-0) was employed for analyzing the diffraction data and performing the Rietveld refinements of the crystal structure. The Bragg peak was modelled by a pseudo-Voigt function (linear combination of Gaussian and Lorenzian components, with σ and γ half-widths, respectively). The σ and γ coefficients depend on θ according to $\sigma = (U \tan^2 \theta + V \tan \theta + W)^{1/2}$ and $\gamma = X/\cos \theta + Y \tan \theta$; the U, V and W parameters come from the instrumental resolution function, X is the Scherrer coefficient for Lorenzian particle size broadening, and Y represents the particle strain broadening. The full width and the mixing coefficient of the pseudo-Voigt function vary with σ and γ according to literature relationships [\[30\]](#page--1-0).

2.2. Electrochemistry

Active material electrodes were fabricated by mixing $LiTi₂NbO₇$ (70%), PVDF binder (15% Solvay 8020 polyvinylidene difluoride) and conductive carbon black (15%, Super P MMM Carbon). The mixture was dispersed in n-methyl-pyrrolidone (NMP) to obtain a dense slurry which was casted on copper foil and dried at 90 °C for 2 h. The active material load was around 1-3 mg/cm². Measurements were performed using CR2032 coin half cells equipped with metallic lithium foils as counter electrode (all potentials are reported versus the couple $Li^{+}/$ Li). The electrolyte was a commercial electrochemical grade solution of 1 M LiPF₆ in dimethylcarbonate: diethylcarbonate 1:1 supported by a porous polypropylene foil. Cells were assembled in an argon filled glove box ($[0₂] < 1$ ppm). The measurements were carried out at room temperature using a Biologic VMP3 multi-channel battery tester.

Download English Version:

<https://daneshyari.com/en/article/1296009>

Download Persian Version:

<https://daneshyari.com/article/1296009>

[Daneshyari.com](https://daneshyari.com)