Contents lists available at ScienceDirect

Solid State Ionics

journal homepage: www.elsevier.com/locate/ssi

Application of TiO₂ to amperometric NO_x sensors based on NASICON

Jian Wu^a, Cheng Zhang^a, Qiang Li^b, Lianlian Wu^b, Danyu Jiang^c, Jinfeng Xia^{c,*}

^a Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 200235, P.R. China

^b East China Normal University, 500 Dongchuan Road, Shanghai 200241, P.R. China

^c Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, P.R. China

A R T I C L E I N F O

ABSTRACT

Article history: Received 18 October 2015 Received in revised form 3 May 2016 Accepted 6 May 2016 Available online 18 May 2016

Keywords: NASICON Amperometric sensor NO NO₂ P25 The work focused on improvement of the current response to NO and the reduction of response time of both NO and NO₂. By adding a layer of TiO₂ catalyst layer, the shortcoming of NO insensitivity of traditional NASICON based amperometric NO₂ sensor was solved. TiO₂ was known as an n-type semiconductor and a high-performance NO oxidation catalyst. We separately applied different types of TiO₂ (rutile and Degussa P25) on the device and compared the test results with the traditional type without a catalyst layer. The results showed that the TiO₂ attached device exhibited a significant improvement to NO response, and P25 was better than rutile TiO₂ on account of the higher activity of anatase TiO₂. In addition, TiO₂ also played a role of a semiconductor electrode, resulting in the increase of response to NO₂. The response time of NO and NO₂ was separately shrunk from 153 s, 70 s to 77 s, 43 s owing to the P25 layer. The current responses were found to be barely affected by the coexistence of CO₂.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Nitrogen oxide (NO_x: NO and NO₂) exhaust from combustion devices and vehicles causes acid rain and photochemical smog, both of which have a major impact on the environment [1-2]. Analytical instruments based on chemical luminescence and the Saltzman method has been used to detect NO_x, but they are either too expensive or too large, or not sufficiently sensitive to low concentrations of NO_x. Therefore, researchers have recently been paying considerable attention to the development of compact, low-priced, and high-sensitivity solidstate sensors which can detect in-situ NO₂ (or NO) in real-time. NO_x is emitted into the environment mostly as NO from combustion devices and automobile engines. In the atmosphere, some of the NO is gradually converted to NO₂ to establish a dynamic balance. The composition and concentration of NO and NO₂ in the air varies because of the differences in humidity, temperature, location, and weather conditions [3–9]. Thus, there is a need for a sensor capable of detecting NO₂ (or NO) in the parts-per-billion (ppb) range.

Yttria-stabilized zirconia (YSZ) [10–12] and sodium super ionic conductor (NASICON) [13–15] are solid-state electrolytes which are widely used in the field of gas sensors. Given that automobile emission standards continue to become stricter, mixed potential-type sensors based on YSZ have been the subject of intense research as such sensors can detect nitrogen dioxide in automobile exhaust [16–17]. Bosch in Germany and NGK in Japan have produced YSZ-based NO₂ sensors for automobile

* Corresponding author. *E-mail addresses*: czhang@sit.edu.cn (C. Zhang), xiajf@mail.sic.ac.cn (J. Xia). applications. However, these products were designed to monitor parts per million (ppm) concentrations of NO₂. They are unable to measure ppb levels. To monitor these lower concentrations of NO₂, NASICONbased amperometric solid-electrolyte sensors [18] have been shown to be advantageous. This kind of sensor was first proposed by Miura et al. in 1997 [19]. The device could detect sub-ppm levels of NO₂ but could not detect NO. To enable the simultaneous detection of the concentration of NO₂ and NO, Miura et al. applied a layer of WO₃ oxidation catalyst to convert the NO to NO₂ [20]. Therefore, they successfully developed a device capable of detecting both NO and NO₂.

TiO₂ is widely applied to heterogeneous photo-catalytic oxidation because of its excellent photo-catalytic effect, and because it is an excellent n-type semiconductor [21–22]. Degussa P25 (20% rutile and 80% anatase) is a standard material in the field of catalytic reactions [23]. P25 has large specific surface area and crystalline imperfections, giving it the ability to capture O₂ from the air [24–26]. For this study, we employed Degussa P25 as a catalyst for amperometric NO_x sensors, which exhibit an excellent response to both NO and NO₂.

2. Experimental

2.1. Materials synthesis

NASICON was synthesized by means of a high-temperature solidstate method using Na_2CO_3 , SiO_2 , ZrO_2 , and $NH_4H_2PO_4$ powders, which were commercially sourced from Sinopharm Chemical Reagent Co., Ltd. The substrates were weighed and mixed according to the mole ratio of the $Na_3Zr_2Si_2PO_{12}$, and then heated in air to 1125 °C for

SOLID STATE IONIC

Fig. 1. Schematic view of sensor with TiO₂ oxidation layer: side view (a) and cross-sectional view (b).

Fig. 2. Schematic sensing model of amperometric NO_x sensor.

12 h. Owing to the volatility of the phosphorus, a 5 wt.% excess of $NH_4H_2PO_4$ was applied. The resulting material was then ground in a mortar to identify the NASICON phase, which was then further milled for 24 h with zirconia balls in anhydrous ethanol to produce a fine powder. A certain amount of powder was cold-isostatic pressed at 160 MPa into 12-mm diameter uniaxial pellets. Finally, NASICON disks were produced by sintering these pellets at 1175 °C for 12 h. The SE oxidation

catalyst was obtained by mixing TiO₂ powder with terpineol and ethyl cellulose, then ball-milling for 1 h in a vibratory mill.

2.2. Fabrication of sensors

As shown in Fig. 1, the sensor was fabricated by screen-printing Pt paste (Pt 7850, Sino-platinum Metals Co., Ltd.) on both sides of the

Fig. 3. Calibration curves for NO (a) and NO₂ (b) for three devices either with or without catalyst layers (-200 mV, 150 °C).

Download English Version:

https://daneshyari.com/en/article/1296049

Download Persian Version:

https://daneshyari.com/article/1296049

Daneshyari.com