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La2NiO4 + δ-based materials (LN) with tetragonal K2NiF4-type structure exhibit high electronic and oxygen ion
conductivity. In this work synthesis, phase relations and oxygen transport properties are reported for the system
La2 − ySryNi1 − xMoxO4 + δ where 0.0 ≤ y ≤ 0.4 and 0.0 ≤ x ≤ 0.1. The solubility of Mo in LN is low, but becomes
enhanced by Sr substitution on theA-site. La1.8Sr0.2Ni0.95Mo0.05O4 + δ (LSNM) bar shaped sampleswere subjected
to electrical conductivity relaxation (ECR) for assessment of oxygen bulk diffusion (Dchem), oxygen surface ex-
change (kchem) and electronic conductivity. The p-type conductivity was 50 S·cm−1 at 900 °C, which is lower
than both LN and LSN (Sr = 0.2). On the other hand, kchem was enhanced by one order of magnitude compared
with LN at all temperatures, while Dchem was lower at T N 700 °C and higher at T b 700 °C.
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1. Introduction

Mixed conductors derived from nickelates with K2NiF4-type struc-
ture, La2NiO4 + δ (LN) and doped LN-compounds have attracted much
attention as promising materials for intermediate-temperature solid
oxide fuel cell (IT-SOFC) cathodes and ceramic membranes for oxygen
separation aswell as applications involving partial oxidation of light hy-
drocarbons [1–9]. The advantages of LN-based materials include favor-
able oxygen transport properties (surface exchange and bulk
diffusion) combined with moderate thermal- and chemical expansion
and high electrocatalytic activity [10–13].

The K2NiF4-type structure of LN is tetragonal (space group I4/mmm
or F4/mmm), and corresponds to alternating layers of perovskite-
and rock salt structure [14–19]. The oxygen ion transport may
occur by a combination of vacancy diffusion in the perovskite layer
and via interstitial sites between the rock-salt and perovskite layers
[18,20,21].

In order to estimate characteristic features of the oxygen transport
and conductivity in LN based compounds, a simplified model may be
considered [22–24]. As we will investigate the properties at relatively
high partial pressures of oxygen we disregard the presence of oxygen
vacancies and assume that the main point defects in La2NiO4+δ are in-
terstitial oxygen ions (Oi

″) and electron holes (h·, originating from the

presence of Ni3+). Hence the following defect equilibria may be
formulated:

1
2
O2 ¼ O″

i þ 2 Ni�Ni
� � ¼ O″

i þ 2h� ð1Þ

corresponding to the equilibrium constant, Kp′:
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i

h i
h�½ �2
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Charge balance is formulated in Eq. (3):

2 O″
i

h i
¼ h�½ �: ð3Þ

And substituting Eq. (3) into Eq. (2) gives:

P
1=2
O2

¼ Kp h�½ �3 ð4Þ

where Kp is a constant. Since the electronic conductivity, σ, is propor-
tional to the concentration of charge carriers the following proportion-
ality should apply for the non-substituted case:

σ∝ h�½ �∝P1
6O2 : ð5Þ
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Substituting divalent Sr for trivalent La on A-site and hexavalent Mo
for divalent Ni on B-site in La2 − yAyNi1 − xBxO4 + δ, the electroneutrality
may be formulated viz.:

2 O″
i

h i
þ Sr0La½ � ¼ h�½ � þ 4 MoNi

����½ �: ð6Þ

Eqs. (1) to (6) will form the basis for discussing the behavior of
conductivity for both non-substituted and substituted LN.

It is reported in the literature that substitution on B-site with
a higher valent element results in a higher concentration of
interstitial oxygen, which may be beneficial for the oxygen diffusivity

[11,17,20,21,23–26], while incorporation of a divalent Sr on A-site
suppress the oxygen diffusivity [11–13,23]. However, doping with Sr
increases the overall conductivity, and EIS studies on Sr-substituted LN
show a lower area specific resistance values compared with the non-
substituted compound, which is advantageous for IT-SOFC applications
[27,28].

The aim of the present work was to assess the phase relations in LN
substituted with Sr and Mo and investigate the effect on electrical con-
ductivity and oxygen transport properties (Dchem and kchem) as mea-
sured by the method of electrical conductivity relaxation (ECR).

Fig. 1. Diffractograms of La2Ni1 − xMoxO4 + δ with x = 0.0125, 0.025, and 0.05. All
SS-samples are sintered at 1300 °C while SP-sample is sintered at 1400 °C. The presence
of the major phase is compared with the characteristic reflections for tetragonal La2NiO4.

Fig. 2. XRD-data for La1.8Sr0.2Ni1xMoxO4 + δ (SS-samples) with x= 0.05, 0.075 and 0.1. All
samples are sintered at 1300 °C. The major LN phase is compared with the characteristic
reflections for La1.8Sr0.2NiO4.

Table 1
Synthesismethods, sintering temperature and phases observed according to XRD-analysis for the nominal stoichiometry: La2 − ySryNi1 − xMoxO4 + δ. Cell parameters obtained by Rietveld
refinement for the major LN phase are also listed. Estimated errors in cell parameters are ±0.0015 Å and ±0.003 Å for a- and c-axis, respectively.

y x Method T/°C Major phase Minor phases a (Å) c (Å)

0.0 0.05 SP 1400 La2Ni1 − zMozO4 + δ La6MoO12-LaMo0.2Ni0.8O3 3.866 12.665
0.0125 SS 1300 La2Ni1 − zMozO4 + δ LaMo0.2Ni0.8O3 3.864 12.679
0.025 SS 1300 La2Ni1 − zMozO4 + δ LaMo0.2Ni0.8O3 3.863 12.682
0.05 SS 1300 La2Ni1 − zMozO4 + δ La6MoO12-LaMo0.2Ni0.8O3 3.863 12.676

0.2 0.05 SP 1250 La1.8Sr0.2Ni0.95Mo0.05O4 + δ – 3.848 12.695
0.05 SP 1400 La1.8Sr0.2Ni0.95Mo0.05O4 + δ – 3.848 12.676
0.05 SP 1500 La1.8Sr0.2Ni0.95Mo0.05O4 + δ – 3.849 12.675
0.05 SS 1300 La1.8Sr0.2Ni0.95Mo0.05O4 + δ – 3.847 12.696
0.075 SS 1300 La1.8Sr0.2Ni1 − zMozO4 + δ LaMo0.2Ni0.8O3 3.847 12.688
0.1 SS 1300 La1.8Sr0.2Ni1 − zMozO4 + δ LaMo0.2Ni0.8O3 3.847 12.689

0.4 0.05 SP 1400 La1.6Sr0.4Ni1 − zMozO4 + δ SrMoO4 3.287 12.704
0.05 SP 1500 La1.6Sr0.4Ni1 − zMozO4 + δ SrMoO4 3.830 12.702
0.05 SS 1100 La1.6Sr0.4Ni1 − zMozO4 + δ SrMoO4 3.827 12.711
0.05 SS 1200 La1.6Sr0.4Ni1 − zMozO4 + δ SrMoO4 3.826 12.708
0.05 SS 1300 La1.6Sr0.4Ni1 − zMozO4 + δ SrMoO4 3.828 12.705
0.05 SS 1400 La1.6Sr0.4Ni1 − zMozO4 + δ SrMo4 3.830 12.703

Fig. 3. Variation in cell parameter for La2 − ySryNi1 − xMoxO4 + δ with Mo-content for
compositions with 0.0, 0.2 and 0.4 Sr. Cell parameters for La2NiO4 is taken from [14].
Samples are heat treated at T = 1300 °C. Filled symbols indicate single phase while
open symbols indicate the presence of secondary phases. Magnitude of error will
typically be within the size of the symbols given in the figures.
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