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Wedevelop a fully quantummechanical formalism to calculate ionic transition states in solids and determine dif-
fusion constants for H in Si and Li and Fe in LiFePO4. The formalism is quantitative and does not involve empirical
parameters.
From the quantummechanical treatment we recover some quantities known from classical theory, e.g. the tem-
perature dependent diffusion constant reflects the activation energy at high T. At low temperature however we
discover a constant diffusion rate linked to the ionic tunneling. Tunneling and hopping rates are considered on an
equal footing and result from the same formalism.We apply the quantummechanical formalism to the diffusion
of H in Si and discover the influence of the zero point energy of the diffusive species in the potential well. For
LiFePO4 we shed some light on the importance of the cross channel diffusion probably intermediated by Fe
anti-site vacancies in the understanding of the experimentally observed diffusion constant. This work opens
up the possibility to study quantitatively diffusion e.g. in potential electrode materials for Li-ion batteries.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Chemical energy storage by intercalation of ions will become in-
creasingly important for future environmentally friendly society.
Metal hydride tanks for fuel cells, Li-ion batteries etc. are spreading
into large scale applications such as electric cars and mobile electronics
already now. Therefore the knowledge about diffusion mechanism of
ions in solids is of great interest.

Degradation and lifetime of intercalation materials are also strongly
linked to ionic diffusion: The self-diffusion of metal ions [1] and the re-
construction in the cathode in absence of the intercalation species are
suspected to cause up to 20% of the degradation [2]. Their relative im-
portance compared to the better known degradation mechanism such
as solid electrolyte interface (SEI) layer formation [3,4,5,6], decomposi-
tion of the organic electrolyte [7],mechanical stress [8,9] anddisintegra-
tion are of large interest.

In order to face these questions a reliable and quantitative formalism
is needed. It should also apply to the faster and better known diffusion
mechanisms of H in silicon and Li in LiFePO4. Both have been discussed
controversially in literature [10,11,12,13]. In this article wewill focus on
these systems in order to show the performance of the formalismdevel-
oped further down. Leaving the investigation of the slower diffusion of
metal ions for further investigation.

Diffusion is linked to the displacement of atoms due to thermal exci-
tations and quantum effects such as quantum-tunneling. It is studied
sometimes by Quantum Monte Carlo [14] or by Molecular Dynamics
(MD) [15]. Both are computationally costly, rather inefficient and the
extracted quantities suffer from sometimes large statistical uncer-
tainties. In order to accelerate the hopping rate, temperatures of several
thousand degrees are applied, which can hamper the interpretation of
the results.

More targeted is the inspection of the potential energy surface of the
solid as a function of ionic displacement in order to detect diffusion
paths [12,16,17]. Decent results justify the application of semiclassical
formalism transition state theory [18] in order to estimate diffusion
rates. In particular it has been found, that in LiFePO4 due to rapid hop-
ping, delocalization of lithium ions and the coupling with polarons the
harmonic approximation breaks down [10,19]. Therefore new compu-
tational approaches for the calculation of the diffusion rate including
quantum mechanical effects are needed. Particularly in potential elec-
trode materials, the potential energy profiles turn out to be sensitive
on the partial charges on the ions [11], on the crystal phase [20] and
concerted hopping increases the diffusion rate [21].

The limits of the semiclassical description are not clear. Furthermore
it involves semi-empirical parameters such as the effective hopping fre-
quency which shows the qualitative character of that theory.

Seeking to compute quantitative diffusion rates we introduce a
quantum mechanical formulation in the first section of this article.[22]
This is done on the basis of the determination of eigenstates of
anharmonic potential wells [23], without recurrence to semiclassical

Solid State Ionics 290 (2016) 116–120

E-mail address: donat.adams@empa.ch.

http://dx.doi.org/10.1016/j.ssi.2016.03.006
0167-2738/© 2016 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Solid State Ionics

j ourna l homepage: www.e lsev ie r .com/ locate /ss i

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ssi.2016.03.006&domain=pdf
http://dx.doi.org/10.1016/j.ssi.2016.03.006
mailto:donat.adams@empa.ch
http://dx.doi.org/10.1016/j.ssi.2016.03.006
http://www.sciencedirect.com/science/journal/01672738
www.elsevier.com/locate/ssi


approximations [24]. The formalism will be tested through application
to fast and well studied diffusion of H in Si, and Li in LiFePO4. Our aim
is to address the capacity fade due self-diffusion of Fe in LiFePO4 in a
follow-up article.

2. Method

We sample transition states based on minimum energy pathways
and saddle points connecting ionic binding sites. The potential energy
surface is determined by e.g. nudged elastic band (NEB) calculations
in Refs. [11,12].

Ions in the crystal lattice can be described by ionic Bloch states. For
each point in reciprocal space k we calculate separately the eigenstates
as a superposition ψk;KðxÞ ¼ ∑

K
ck−Keikx � bK ðxÞ of localized states bK(x).

As a basis we use trigonometric functions cos(K ⋅x) and sin(K ⋅x) with K

¼ p � 2πa , where a is the length of the well and p is an integer. The corre-
sponding Schrödinger equation reads as

ψ−k;K xð Þ − ℏ2

2m
d2

d2x

�����
�����ψk;K xð Þ

* +
þ ψ−k;K 0 xð Þ Vk xð Þj jψk;K xð Þ
D E

¼ δK;K 0ε kð Þ:

ð1Þ

When studying single particle diffusion we can replace Vk by V0,
which is given e.g. in Refs. 11 and 12. As a result we obtain the energy
bands εj(k), see e.g. Fig. 2. The bands appear flat allowing for further
simplifications as we will show. We calculate the average velocity of a
band

vj ¼
1
Ω

Z
BZ
v j kð Þdk ð2Þ

WhereΩ is the volume of the first Brillouin zone and the velocity is
derived through the dispersion of the bands

vj kð Þ ¼ 1
ℏ

d
dk

ε j kð Þ: ð3Þ

Apart from the average band velocity (Eq. (2)), in what follows we
will consider all quantities at k=0, which is justified by the flatness of
the bands.

According to Vineyard (Ref. [25]) the transition rate Γ across the po-
tential barrier can be determined through integration in configuration
space

Γ ¼ I
QA

ð4Þ

t?>where I is the number of states crossing the saddle point of
the barrier, and QA the total number of accessible states in the sys-
tem. We develop this expression for quantummechanical states nat-
urally as

Γ ¼
X
j

v j

a0
� g j Tð Þ � ψ0

a0
2

� ���� ���2: ð5Þ

where gj(T) is the occupation number of state jwithin the Bose–Ein-
stein statistics

g j Tð Þ ¼ 1
eε j−μ−1

: ð6Þ

In Eq. (5) we have used the fact, that QA represents the total number
of accessible states and is included in the occupation number gj. It affects
a renormalization. The number of states crossing the saddle point of the

barrier is the product of the particle density jψ0ða02 Þj
2, the occupation

number and the frequency v j

a0
at which they are accessed. Then the

diffusion constant D expresses as

D ¼ Γ � a0ð Þ2: ð7Þ

With this approachwe go further than earlier works [26]. On the one
hand we do not artificially constrain the ions between two sites, but
calculate eigenstates. Furthermore we release the concept of the jump
frequency [27], which is based on the classical view of the problem.

We apply this formalism to known potential wells from Ref. [12] for
H diffusion in Si and Ref. [11] for Li diffusion in LiFePO4.

3. Results

3.1. H diffusion in Si

Based on the effective potential [12] of H+ in siliconwe calculate the
eigenstates and diffusion-constants in order to compare them to other
computational results as well as experimental ones in Fig. 3. From the
slope of the diffusion we calculate an effective activation energy of
0.40 eV, somewhat below the potential height of 0.45 eV. This is due
to a quantum mechanical correction — the zero point energy of the
ion within the well —which is 0.036 eV: It reduces the energy to over-
come during diffusion.

The diffusion coefficient is linear in the particle density (see further
down for LiFePO4), i.e. for a reduced number of particles available for
diffusion logD is shifted vertically in the representation in Fig. 3, while
as the slope [28] of logD remains unchanged. The calculated slope of
logD coefficients fall between the TBMD data of Panzarini and
Colombo [13], the TBMD data of Bédard and Lewis [29] and the ab initio
MD calculations of Buda et al. [30]. The underlying potential energy
maximum appears to be higher in the TBMD and smaller in ab initio
MD which is reflected by their corresponding slope.

Due to the large spread of the experimental data (Refs. [31–37]) it is
difficult to judge the quality of the different works. We just state, that
the quality in the description of the atomic interaction appears to be
transferred to the calculation of the diffusion constant D, independently
of the method to calculate D. Consequently the atomic potentials used
for the determination of D seem to play an important role.

Furthermore, we access the low temperature limit of the diffusion
DT→0=5.15 ⋅10−20 (see Fig. 3 inset). At about 100 K the population is
mainly on the ground state. However, this state has some density at
the maximum of the potential well, which is a requirement for the
tunneling and thus tunneling can take place (see also Eq. (5)).

3.2. Li diffusion in LiFePO4

The formalism developed above is then applied to the diffusion of
Li+ in LiFePO4 according the minimum energy paths determined else-
where (Ref. [11]). We infer from other studies [10,15] that the geomet-
ric diffusion path is bended and therefore longer than the distance
between two Li-sites. This can be taken into account by stretching the
reaction coordinate given in Ref. [11] by a factor

ffiffiffi
2

p
. However, the im-

pact of the stretching on the eigen-energies is not significant.
Solving Eq. (1) we obtain energies and eigen-states of the Li-ion

(and of the vacancies) within the respective potential well as shown
in Fig. 2 (inset). We find that states with an odd number of nodes alter-
nate with states with an even number of nodes. Furthermore the odd
states appear to be more confined within the potential well and due
to their symmetry showa zero crossing at themaximumof the potential
well. They therefore cannot contribute to diffusion [42].

We then apply Eq. (7) to these states. In order to cover previous ex-
perimental and theoretical data, we create datasets with scaled barrier
amplitudes (Vmax) between 0.19 and 0.9 eV (blue lines in Fig. 4). We
compare different potential shapes (Fig. 1 in Ref. [11]: profile for Li vs.
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