Contents lists available at ScienceDirect

### Solid State Ionics

journal homepage: www.elsevier.com/locate/ssi

# Characterization of *semi*-interpenetrating polymer electrolytes containing poly(vinylidene fluoride-*co*-hexafluoropropylene) and ether-modified polysiloxane



<sup>a</sup> Institute for Inorganic and Analytical Chemistry, University of Münster, Correnstr. 28/30, 48149 Münster, Germany <sup>b</sup> Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden

#### ARTICLE INFO

Article history: Received 22 December 2015 Received in revised form 12 February 2016 Accepted 18 February 2016 Available online 10 March 2016

*Keywords:* Polymer network Solid polymer electrolytes Differential scanning calorimetry

#### ABSTRACT

This work presents a detailed study of a *semi*-interpenetrating polymer network (*semi*-IPN) consisting of poly(vinylidene fluoride-*co*-hexafluoropropylene) (PVDF-HFP), polysiloxane-*comb*-propyl(triethylene oxide) (PSx) and lithium bis(trifluoromethane)sulfonimide (LiTFSI) prepared by a solution casting technique. According to differential scanning calorimetry (DSC), formation of the PVDF-HFPs crystalline phase is inhibited by the PSx which results in a significant improvement of tensile strain. A homogeneous distribution of PVDF-HFP and PSx in the membrane is analyzed using micro-FTIR mapping. Since no peak-shift due to mixing of PVDF-HFP and PSx was observed in FTIR second derivative analysis, computational models were applied to investigate the intermolecular interactions between the constituting domains of different polarity. An influence of PVDF-HFP on the Li<sup>+</sup> transport in the ion-conducting PSx was determined by calculating the effective conductivities. The highest ionic conductivity of  $7.7 \times 10^{-5}$  S cm<sup>-1</sup> at room temperature was reached with 15 wt.% LiTFSI. The electrochemical stability window ranges from 0.5 V to 4.6 V vs. Li/Li<sup>+</sup> reference electrode.

© 2016 Elsevier B.V. All rights reserved.

#### 1. Introduction

Solid polymer electrolytes (SPEs) are promising materials to overcome current problems in battery technology such as leaks, flammability and internal shorting caused by use of organic, liquid components [1, 2]. Different types of SPEs such as gelled SPEs [3–5], porous SPEs [6,7] and dry SPEs [8] have already been reported in literature. First research approaches on SPEs go back to the early seventies, where poly(ethylene oxide) (PEO) was launched by Wright as the first SPE [9]. Due to high crystallinity and poor motion performance of the PEO backbone, the conductivities are quite low in the magnitude of  $10^{-7}$  S cm<sup>-1</sup> at room temperature and have already caused a problem for practical use [9, 10]. A fast ion transport in SPEs is predominantly due to the existence of amorphous phases and low glass transition temperatures  $(T_g)$ which induces a good polymer chain flexibility [11]. Modified polysiloxanes have already been proven to be a suitable alternative to PEO with lower glass transition temperature and conductivities close to those required for practical use  $(10^{-3} \text{ S cm}^{-1})$  [12–14]. However, polysiloxanes show low mechanical stability [12]. To overcome this

\* Corresponding authors.

(H.-D. Wiemhöfer).

<sup>1</sup> Authors considered equal.

problem, the formation of interpenetrating polymer networks (IPNs) is a promising technique where two or more polymer networks are at least partially interlaced on a molecular scale [15]. A *semi*-IPN is a special type of IPN consisting of linear or branched polymers which can be separated from the host network without breaking chemical bonds [15–17].

Due to its high thermal stability, chemical resistance and mechanical strength. PVDF is a suitable polymer to act as a stabilizing host matrix [18]. PVDF based membranes are already applied in different fields such as wastewater treatment [19], vacuum membrane distillation [20] or as active separator in lithium ion batteries [21,22]. However, PVDF shows high crystallinity in the range between 35% and 70% which impairs the properties as SPE [18]. In general, a suppression of crystallinity of polymers can be realized by (a) cross-linking; (b) polymer alloys such as interpenetrating networks; and (c) copolymerization [23]. Several co-polymerizations of PVDF were carried out [24] by forming *semi*-crystalline copolymers such as poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE) [25], poly(vinylidene fluoride-co-chlorotrifluoroethylene) (PVDF-CTFE) [26] or poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) with a reduced degree of crystallinity compared to neat PVDF. For application as electrolyte material in lithium ion batteries, PVDF-HFP has attracted the most attention as a gel polymer electrolyte [27-32] rather than as a solid polymer electrolyte. However, research on PVDF-HFP-based SPEs usually involves PEO, e.g. PVDF-HFP/PEO blend membranes







SOLID STATE IONIC

E-mail addresses: eva.cznotka@wwu.de (E. Cznotka), hdw@uni-muenster.de

#### Table 1

Porosity (P) determination of membranes with different PVDF-HFP, PSx and LiTFSI compositions.

| PVDF-HFP [wt.%]                      | PSx [wt.%] | LiTFSI [wt.%] | P [%]        |
|--------------------------------------|------------|---------------|--------------|
| Variation of (net-PVDF-HFP)-sipn-PSx |            |               |              |
| 90                                   | 10         |               | $4\pm0.3$    |
| 80                                   | 20         |               | $5\pm0.5$    |
| 70                                   | 30         |               | $7 \pm 1.1$  |
| 60                                   | 40         |               | $11 \pm 0.5$ |
| 50                                   | 50         |               | $18 \pm 0.1$ |
| 40                                   | 60         |               | $26\pm0.2$   |
| Variation of LiTFSI in semi-IPNs     |            |               |              |
| 38                                   | 57         | 5             | $24\pm0.2$   |
| 36                                   | 54         | 10            | $26\pm0.6$   |
| 34                                   | 51         | 15            | $26\pm0.7$   |
| 32                                   | 48         | 20            | $25\pm0.1$   |
| 30                                   | 45         | 25            | $24\pm0.6$   |

prepared by Malik et al. which were analyzed concerning their thermal degradation [33]. Elmér et al. produced PVDF-HFP based membranes with a cross-linked PEG-grafted polymethacrylates and LiTFSI which offer ionic conductivities of  $10^{-5}$  S cm<sup>-1</sup> at room temperature [34].

In the herein presented work a novel SPE based on PVDF-HFP combined with an ion-conducting polysiloxane-*comb*-propyl(triethylene oxide) (PSx) in form of a *semi*-IPN ((*net*-PVDF-HFP)-*sipn*-PSx-LiTFSI) is prepared and investigated. During preparation, different amounts of lithium bis(trifluoromethane)sulfonimide (LiTFSI) were added and SPE-membranes were prepared by solution casting technique. Thermal and morphological properties were analyzed by DSC. Due to the amphiphilic nature of PSx with its ether-moieties and the rather unpolar siloxane-backbone, computational methods were applied to gain insights into the intermolecular interactions of ether/PVDF and siloxane backbone/PVDF as well as their energetic aspects, in order to support experimental FTIR investigations. Furthermore, SEM-EDX and micro-FTIR mapping were applied to visualize the distribution of the *semi*-IPN ingredients. The ionic conductivity as well as the electrochemical



Fig. 2. DSC thermograms for pure PVDF-HFP films, (*net*-PVDF-HFP)-*sipn*-PSx films with different ratios (50:50; 40:60; 30:70) and *semi*-IPN with different LiTFSI concentrations.

stability of the *semi*-IPN system was investigated to determine its application as SPE in lithium-ion batteries.

#### 2. Experimental

#### 2.1. Preparation of semi-IPNs

Liquid polysiloxane-*comb*-propyl(triethylene oxide) (PSx) was prepared according to the literature [35,36]. *Semi*-IPNs were made by solution casting technique using PVDF-HFP (Sigma-Aldrich,  $M_w \sim 4 \times 10^5$ , bimodal distribution) as a host network, PSx as a conducting component and LiTFSI (Sigma-Aldrich) as a conducting salt. These components were dissolved in anhydrous acetone and poured into a Petri dish. After complete evaporation of acetone the membranes were dried at 80 °C under vacuum ( $10^{-2}$  mbar) for 5 h and then stored at 80 °C in high vacuum ( $10^{-5}$  mbar) for additional 2 days. Due to membrane mechanical stability reasons, a ratio of 40:60 wt.% for PVDF-HFP:PSx was chosen in (*net*-PVDF-HFP)-*sipn*-PSx and *semi*-IPNs. Membrane preparation



Fig. 1. SEM images of (*net*-PVDF-HFP)-*sipn*-PSx membranes of the a) upper surface and b) bottom surface and corresponding SEM-EDX images of the c) upper surface and d) bottom surface.

Download English Version:

## https://daneshyari.com/en/article/1296150

Download Persian Version:

https://daneshyari.com/article/1296150

Daneshyari.com