Contents lists available at SciVerse ScienceDirect

## Solid State Ionics

journal homepage: www.elsevier.com/locate/ssi

# Defect structure and electrical conductivity in the pseudo-binary system Bi<sub>3</sub>TaO<sub>7</sub>-Bi<sub>3</sub>NbO<sub>7</sub>

### M. Struzik <sup>a</sup>, X. Liu <sup>b</sup>, I. Abrahams <sup>b,\*</sup>, F. Krok <sup>a,\*</sup>, M. Malys <sup>a</sup>, J.R. Dygas <sup>a</sup>

<sup>a</sup> Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa, Poland

<sup>b</sup> Centre for Materials Research, School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK

#### ARTICLE INFO

Article history: Received 9 September 2011 Received in revised form 29 March 2012 Accepted 3 May 2012 Available online 26 May 2012

Keywords: Bismuth oxide Bismuth tantalum niobium oxide Oxide ion conductors Defect structure Neutron diffraction X-ray diffraction AC impedance spectroscopy

#### ABSTRACT

A study of electrical and structural characteristics of compositions in the  $Bi_3Ta_1 - _xNb_xO_7$  system, using X-ray and neutron powder diffraction and AC impedance spectroscopy, is presented. The electrical conductivity increases with increasing niobium content. A full solid solution is observed which adopts an incommensurately ordered pseudo-cubic fluorite structure (type II). Analysis of the defect structure of the x = 0.50 composition shows chains of niobate/tantalate octahedra as a likely structural motif. A small degree of non-linearity in the thermal expansion of the cubic subcell lattice parameter is observed.

© 2012 Elsevier B.V. All rights reserved.

SOLID STATE IONIC

#### 1. Introduction

The disordered defect fluorite phase,  $\delta$ -Bi<sub>2</sub>O<sub>3</sub>, exhibits the highest oxide ion conductivity of any known material [1], but is only stable over a narrow temperature range, from *ca*. 730 °C to its melting point at *ca*. 825 °C. Solid-solution formation with other oxides allows for stabilisation of fluorite based phases to room temperature [2–6]. However, many of these phases show a degree of superlattice ordering or distortions away from regular cubic symmetry, with a consequent lowering of electrical conductivity.

The binary systems of  $Bi_2O_3-M_2O_5$ , where M = Nb or Ta, have been studied by a number of investigators [7–16]. At compositions with Bi:M ratios of 3:1 and above, a number of ordered fluorite type phases have been identified. Zhou [10] classified the phases that appear in these systems into four principal types (I to IV). At the 3:1 Bi:M ratio, both  $Bi_3NbO_7$  and  $Bi_3TaO_7$  exhibit type-II pseudo-cubic fluorite phases.  $Bi_3NbO_7$  is known to exhibit unusual polymorphism, with a tetragonally ordered phase (type-III) existing between 800 °C and 900 °C and the pseudo-cubic type-II phase stable above and below this temperature range [17,18]. There is no indication of similar polymorphism in  $Bi_3TaO_7$ , despite the fact that Nb and Ta oxides often exhibit similar chemistries.

\* Corresponding authors.

We have recently reported on the defect structures of type-II forms of  $Bi_3NbO_7$  [19] and  $Bi_3TaO_7$  [20]. Both structures exhibit an incommensurate superlattice characteristic of the type-II phase. In a detailed analysis of the structure of  $Bi_3TaO_7$ , using neutron diffraction, we were able to propose the existence of chains of tantalate octahedra as a key structural motif in the system. Using electron diffraction, Tang and Zhou [21] were able to propose models for the type II bismuth niobate solid solution involving Nb<sub>7</sub>O<sub>30</sub> and Nb<sub>18</sub>O<sub>72</sub> pyrochlore like clusters. Later work by Withers et al. [16], summarised by Ling [12] characterised the incommensurate nature of the type II structure



ion sites





*E-mail addresses:* i.abrahams@qmul.ac.uk (I. Abrahams), fkrok@mech.pw.edu.pl (F. Krok).

<sup>0167-2738/\$ –</sup> see front matter s 2012 Elsevier B.V. All rights reserved. doi:10.1016/j.ssi.2012.05.005

| М. | Struzik | et | al. , | Solid | State | Ionics | 218 | (2012) | 25-30 |
|----|---------|----|-------|-------|-------|--------|-----|--------|-------|
|----|---------|----|-------|-------|-------|--------|-----|--------|-------|

#### Table 1

Crystal and refinement parameters for Bi<sub>3</sub>Ta<sub>0.5</sub>Nb<sub>0.5</sub>O<sub>7</sub>.

| Temperature                                  | 23 °C                                                              | 800 °C                                                             |
|----------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|
| Chemical                                     | Bi <sub>3</sub> Ta <sub>0.5</sub> Nb <sub>0.5</sub> O <sub>7</sub> | Bi <sub>3</sub> Ta <sub>0.5</sub> Nb <sub>0.5</sub> O <sub>7</sub> |
| formula                                      |                                                                    |                                                                    |
| Formula weight                               | 875.86                                                             | 875.86                                                             |
| Crystal system                               | Cubic                                                              | Cubic                                                              |
| Space group                                  | Fm-3m                                                              | Fm-3m                                                              |
| Unit cell<br>dimension                       | a=5.45918(3) Å                                                     | a = 5.50668(4) Å                                                   |
| Volume                                       | 162.698(3) Å <sup>3</sup>                                          | 166.982(4) Å <sup>3</sup>                                          |
| Z                                            | 1                                                                  | 1                                                                  |
| Density<br>(calculated)                      | $8.939 \mathrm{g} \mathrm{cm}^{-3}$                                | $8.710 \mathrm{g}\mathrm{cm}^{-3}$                                 |
| Incommensurate<br>modulation<br>parameter, ε | 0.388                                                              | 0.386                                                              |
| R-factors <sup>a</sup>                       | (a) Neutron backscattering                                         | (a) Neutron backscattering                                         |
|                                              | $R_{wp} = 0.0226, R_p = 0.0342$                                    | $R_{wp} = 0.0126, R_p = 0.0257,$                                   |
|                                              | $R_{ex} = 0.0033, R_F 2 = 0.1707$                                  | $R_{ex} = 0.0062, R_F 2 = 0.1794$                                  |
|                                              | (b) Neutron low angle                                              | (b) Neutron low angle                                              |
|                                              | $R_{wp} = 0.0587, R_p = 0.0409$                                    | $R_{wp} = 0.0503, R_p = 0.0403,$                                   |
|                                              | $R_{ex} = 0.0131, R_F 2 = 0.1205$                                  | $R_{ex} = 0.0260, R_F 2 = 0.1309$                                  |
|                                              | (c) X-ray                                                          | (c) X-ray                                                          |
|                                              | $R_{wp} = 0.0683, R_p = 0.0440$                                    | $R_{wp} = 0.0495, R_p = 0.0348,$                                   |
|                                              | $R_{ex} = 0.0218$ , $R_F 2 = 0.0307$                               | $R_{ex} = 0.0257, R_F 2 = 0.0231$                                  |
| Total no. of<br>variables                    | 118                                                                | 118                                                                |
| No of profile                                | 4199 (neutron backscattering)                                      | 4199 (neutron backscattering)                                      |
| points used                                  | 4641 (neutron low angle)<br>6281 (X-ray)                           | 4641 (neutron low angle)<br>6268 (X-ray)                           |

<sup>a</sup> For definition of R-factors see reference [26].

in the bismuth niobates and bismuth tantalates using superspace symmetry, with a model involving both chains and clusters of tantalate/niobate octahedra. Interestingly, superlattice ordering is lost on subvalent substitution of Nb<sup>5+</sup> with Y<sup>3+</sup> as seen in the pseudobinary system Bi<sub>3</sub>NbO<sub>7</sub>–Bi<sub>3</sub>YO<sub>6</sub>, where stabilisation of the disordered  $\delta$ -type phase is observed [19].

An investigation of the pseudo-binary system Bi<sub>3</sub>NbO<sub>7</sub>-Bi<sub>3</sub>TaO<sub>7</sub>, synthesised by mechanochemical routes, has shown a full solid

#### Table 3

Significant contact distances (Å) for  $Bi_3Ta_{0.5}Nb_{0.5}O_7.$  Estimated standard deviations are given in parentheses.

| Temperature   | 23 °C      | 800 °C     |
|---------------|------------|------------|
| Bi/Nb/Ta-O(2) | 2.2680(4)  | 2.2797(4)  |
| Bi/Nb/Ta-O(4) | 1.93011(1) | 1.94691(1) |

solution range [22]. More recently, research on this system has focused on characterisation of dielectric properties [23,24]. In the present study, we examine the thermal dependence of defect structure and compositional dependence of electrical conductivity in this system.

#### 2. Experimental

#### 2.1. Sample preparations

Samples of general composition  $Bi_3Ta_{1-x}Nb_xO_7$  (x = 0.25, 0.50 and 0.75) were prepared using stoichiometric amounts of  $Bi_2O_3$  (Aldrich, 99.9%), Nb<sub>2</sub>O<sub>5</sub> (Aldrich, 99.9%) and Ta<sub>2</sub>O<sub>5</sub> (Aldrich, 99.9%). Starting mixtures were ground in ethanol using a planetary ball mill. The dried mixtures were heated initially at 750 °C for 24 h, then cooled, reground and pelletised. Pellets were pressed isostatically at a pressure of 400 MPa, then sintered at 800 °C for 10 h, before slow cooling in air to room temperature, over a period of approximately 12 h.

#### 2.2. Electrical measurements

Electrical parameters were determined by impedance spectroscopy, using a fully automated Solartron 1255/1286 system, in the frequency range 1 Hz to  $5 \times 10^5$  Hz (18 frequencies per decade). Samples for impedance measurements were rectangular blocks (*ca.*  $6 \times 3 \times 3$  mm<sup>3</sup>) cut from sintered pellets using a diamond saw. Platinum electrodes were sputtered by cathodic discharge on the two smallest flat polished parallel faces of the sample. Impedance spectra were recorded during heating and cooling ramps between *ca.* 300 °C

#### Table 2

Refined structural parameters for Bi<sub>3</sub>Ta<sub>0.5</sub>Nb<sub>0.5</sub>O<sub>7</sub> at (a) 23 °C and (b) 800 °C. Estimated standard deviations are given in parentheses.

| (a)                                             |                                 |                 |                 |                 |                        |                                                  |  |  |
|-------------------------------------------------|---------------------------------|-----------------|-----------------|-----------------|------------------------|--------------------------------------------------|--|--|
| Atom                                            | Wyc.                            | x               | у               | Z               | Occ.                   | $U_{\rm iso/eqv}$ (Å <sup>2</sup> ) <sup>b</sup> |  |  |
| Bi                                              | 4a                              | 0.0(-)          | 0.0(-)          | 0.0(-)          | 0.75(-)                | 0.0197(2)                                        |  |  |
| Nb                                              | 4a                              | 0.0(-)          | 0.0(-)          | 0.0(-)          | 0.125(-)               | 0.0197(2)                                        |  |  |
| Та                                              | 4a                              | 0.0(-)          | 0.0(-)          | 0.0(-)          | 0.125(-)               | 0.0197(2)                                        |  |  |
| O(2)                                            | 32f                             | 0.2889(3)       | 0.2889(3)       | 0.2889(3)       | 0.193(1)               | 0.073(1)                                         |  |  |
| O(4)                                            | 24d                             | 0.5(-)          | 0.25(-)         | 0.25(-)         | 0.034(1)               | 0.073(1)                                         |  |  |
| Anisotropic thermal parameters(Å <sup>2</sup> ) |                                 |                 |                 |                 |                        |                                                  |  |  |
| Atom                                            | <i>U</i> <sub>11</sub>          | U <sub>22</sub> | U <sub>33</sub> | U <sub>12</sub> | U <sub>13</sub>        | U <sub>23</sub>                                  |  |  |
| Bi/Nb/Ta                                        | 0.0197(2)                       | 0.0197(2)       | 0.0197(2)       | 0.0(-)          | 0.0(-)                 | 0.0(-)                                           |  |  |
| 0(2)                                            | 0.073(1)                        | 0.073(1)        | 0.073(1)        | -0.0081(5)      | -0.0081(5)             | -0.0081(5)                                       |  |  |
| (b)                                             |                                 |                 |                 |                 |                        |                                                  |  |  |
| Atom                                            | Wyc.                            | x               | У               | Ζ               | Occ.                   | $U_{\rm iso/eqv}({\rm \AA}^2)^b$                 |  |  |
| Bi                                              | 4 <i>a</i>                      | 0.0(-)          | 0.0(-)          | 0.0(-)          | 0.75(-)                | 0.0454(2)                                        |  |  |
| Nb                                              | 4a                              | 0.0(-)          | 0.0(-)          | 0.0(-)          | 0.125(-)               | 0.0454(2)                                        |  |  |
| Та                                              | 4a                              | 0.0(-)          | 0.0(-)          | 0.0(-)          | 0.125(-)               | 0.0454(2)                                        |  |  |
| O(2)                                            | 32f                             | 0.2937(3)       | 0.2937(3)       | 0.2937(3)       | 0.187(1)               | 0.077(1)                                         |  |  |
| O(4)                                            | 24d                             | 0.5(-)          | 0.25(-)         | 0.25(-)         | 0.042(1)               | 0.077(1)                                         |  |  |
| Anisotropic them                                | mal parameters(Å <sup>2</sup> ) |                 |                 |                 |                        |                                                  |  |  |
| Atom                                            | U <sub>11</sub>                 | U <sub>22</sub> | U <sub>33</sub> | U <sub>12</sub> | <i>U</i> <sub>13</sub> | U <sub>23</sub>                                  |  |  |
| Bi/Nb/Ta                                        | 0.0454(2)                       | 0.0454(2)       | 0.0454(2)       | 0.0(-)          | 0.0(-)                 | 0.0(-)                                           |  |  |
| 0(2)                                            | 0.077(1)                        | 0.077(1)        | 0.077(1)        | -0.0062(5)      | -0.0062(5)             | -0.0062(5)                                       |  |  |
|                                                 |                                 |                 |                 |                 |                        |                                                  |  |  |

<sup>b</sup>  $U_{eqv} = (U_{11} + U_{22} + U_{33})/3.$ 

Download English Version:

## https://daneshyari.com/en/article/1296190

Download Persian Version:

https://daneshyari.com/article/1296190

Daneshyari.com