Contents lists available at ScienceDirect

Solid State Ionics

journal homepage: www.elsevier.com/locate/ssi

Overcoming phase instability of RBaCo₂O_{5+ δ} (R = Y and Ho) by Sr substitution for application as cathodes in solid oxide fuel cells

Jung-Hyun Kim ^{a,1}, Young Nam Kim ^b, Zhonghe Bi ^c, Arumugam Manthiram ^b, M. Parans Paranthaman ^c, Ashfia Huq ^{a,*}

^a Neutron Scattering Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

^b Electrochemical Energy Laboratory & Materials Science and Engineering Program, The University of Texas at Austin, Austin, TX 78712, USA

^c Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

ARTICLE INFO

Article history: Received 31 May 2013 Received in revised form 28 August 2013 Accepted 2 September 2013 Available online 26 September 2013

Keywords: Solid oxide fuel cells Layered perovskite cathode Phase decomposition YBaCo₂O_{5 + δ} HoBaCo₂O_{5 + δ}

ABSTRACT

Phase instabilities of the RBaCo₂O_{5+ δ} (R = Y and Ho) layered-perovskites and their decompositions into RCoO₃ and BaCoO_{3-z} at 800 °C in air were investigated. The phase instability will restrict their high temperature applications such as cathodes in solid oxide fuel cells (SOFC). However, appropriate amount of Sr substitution (\geq 60% for R = Y and \geq 70% for R = Ho) for Ba successfully stabilized the R(Ba_{1-x}Sr_x)Co₂O_{5+ δ} phase at elevated temperatures. This can be explained to be due to the decrease in oxygen vacancies in the R-O layer, decrease in R-O bond length, and consequent improvement in structural integrity. In addition, the Sr substitution (x = 0.6–1.0) for Ba provided added benefit with respect to the chemical stability against Ce_{0.8}Gd_{0.2}O_{1.9} (GDC) electrolyte, which is a critical requirement for the cathodes in SOFC. Among the various compositions investigated, the Y(Ba_{0.3}Sr_{0.7})Co₂O_{5+ δ} + GDC composite cathode delivered the optimum electrochemical performances with a stable phase, demonstrating the potential as a cathode in SOFC.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Recently, the RBaCo₂O_{5+ δ} (R = lanthanide and Y) layered-perovskite oxides have drawn much attention due to the wide variations in oxygen content (5 + δ), where 0 $\leq \delta \leq$ 1, and promising mixed ionic– electronic conducting (MIEC) properties [1-6]. The RBaCo₂O_{5+ δ} oxides have the R–O and Ba–O layers alternating along the *c*-axis, and the difference in the ionic radii between the R^{3+} and Ba^{2+} ions plays a dominant role in determining the oxygen content values and the crystal structure [1-3.7]. For example, the amount of oxygen vacancy localized in the R–O layer increases with decreasing size of the R^{3+} ions in the air-synthesized RBaCo₂O_{5+ δ} samples. At a given R³⁺ ions, however, the amount of oxygen vacancies also varies depending on temperature and atmosphere (oxygen partial pressure). The size of the R³⁺ ions, oxygen contents, and corresponding crystal structures influences the thermal and electrochemical properties of $RBaCo_2O_{5+\delta}$. [1,8,9] As a result, there has been growing interest to explore various $R(Ba_{1-x}A_x)Co_{2-v}M_vO_{5+\delta}$ (A = Ca, Sr, and M = Fe, Ni, Cu) compounds with improved cathode performance and lower thermal expansion coefficient for SOFC application [7,10–15].

Among the various $RBaCo_2O_{5+\delta}$ samples investigated, R = Y has drawn attention because it forms various superstructures due to an ordering of oxygen vacancies [16,17]. It was proposed that the formation

of superstructure in the YBaCo₂O_{5+ δ} is determined by its oxygen content value (δ); $2a_p \times 1a_p \times 1a_p$ (p refers to perovskite) superstructure for $\delta \ge 0.5$, $3a_p \times 3a_p \times 1a_p$ superstructure for $0.25 \le \delta \le 0.44$, and no superstructure for $0 \le \delta \le 0.19$ [16]. This large amount of oxygen vacancies in YBaCo₂O_{5+ δ} may be beneficial to the oxygen transport in the lattice, which is one of the important requirements for cathodes in SOFC [3,18]. However, YBaCo₂O_{5+ δ} had a side-reaction problem in contact with La_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.2}O_{2.8} electrolyte at 1000 °C [1]. Alternatively, Xue et al. [19] reported that YBa_{0.5}Sr_{0.5}Co₂O_{5+ δ} composition showed no such side reaction with La_{0.9}Sr_{0.1}Ga_{0.8}Mg_{0.115}Co_{0.085}O_{2.85} electrolyte at 950 °C.

To date, however, the phase stabilities of YBaCo₂O_{5+ δ} and HoBaCo₂-O_{5+ δ} at the operation temperature of SOFC (600 °C $\leq T \leq$ 800 °C) have not been adequately investigated. This is the first report which describes the phase instability of the YBaCo₂O_{5+ δ} and HoBaCo₂O_{5+ δ} at 800 °C, to the best of our knowledge. In addition, it is necessary to examine the chemical stability of YBaCo₂O_{5+ δ} against other standard electrolytes such as GDC. With an aim to overcome the phase instability problem and apply them as cathodes in SOFC, we present here an investigation of R(Ba_{1-x}Sr_x)Co₂O_{5+ δ} (R = Y and Ho) system. The effects of Sr substitution for Ba in R(Ba_{1-x}Sr_x)Co₂O_{5+ δ} on the high temperature phase stability, chemical stability with GDC electrolytes, thermal and electrochemical properties are characterized and discussed.

2. Experimental

The $R(Ba_{1-x}Sr_x)Co_2O_{5+\delta}$ powders (R = Y and Ho, x = 0-1.0) were synthesized by a conventional solid-state reaction method. Required

SOLID STATE IONIC

^{*} Corresponding author. Tel.: +1 865 574 7923.

E-mail address: huga@ornl.gov (A. Hug).

¹ Present address: General Motors Global R&D Center, Warren, MI 48090, USA.

^{0167-2738/\$ -} see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.ssi.2013.09.001

amounts of Y₂O₃, Ho₂O₃, BaCO₃, SrCO₃, and Co₃O₄ were thoroughly mixed in a mortar and pestle and calcined at 1000 °C for 12 h in air. The calcined powders were then ground, pressed into pellets, and sintered at 1075–1125 °C for 12–24 h in air. The synthesized materials were characterized by X-ray diffraction (XRD, Scintag and PANalytical) using a Cu K α radiation. The room-temperature oxygen content values were determined by iodometric titration [20]. Thermogravimetric analysis (TGA, Netzsch STA) of the Y(Ba_{1-x}Sr_x)Co₂O_{5+ δ} samples was carried out in air.

The polarization resistances (R_p) of the Y(Ba_{1-x}Sr_x)Co₂O_{5+ δ} + Gd_{0.2}Ce_{0.8}O_{1.9} (GDC, Nextech, Micro-grade) composite (1:1 wt. ratio) cathodes in contact with GDC electrolytes were measured using symmetrical cells by ac-impedance spectroscopy (Solartron 1260 FRA). All the cathode materials were mixed with an organic binder (Heraeus V006) to form a slurry (1:1 wt. ratio), screen-printed on each side of the GDC electrolytes, and then heated at 1000 °C for 3 h. The composite cathodes $(Y(Ba_{1-x}Sr_x)Co_2O_{5+\delta} + Gd_{0.2}Ce_{0.8}O_{1.9})$ showed similar particle sizes of around 1 µm in diameter. For the SOFC performance test, anodesupported single cells consisting of composite cathode/GDC/Ni + GDC anode were prepared. Here, the composite cathode was again attached at 1000 °C for 3 h. The experimental details are available elsewhere [21]. Pt meshes and wires were attached to each electrode using Pt paste as a current collector. During the single cell fuel cell operation, humidified H₂ (~3% H₂O at 25 °C) and air were supplied, respectively, as fuel and oxidant. After the fuel cell performance tests, the microstructures of the cathodes were observed with a scanning electron microscope (SEM, JEOL JSM-5610).

3. Results and discussion

3.1. Phase instability of RBaCo₂O_{5+ δ} (R = Y and Ho) at high temperatures in air

Fig. 1 compares the room-temperature XRD patterns of the YBaCo₂-O_{5+δ} and HoBaCo₂O_{5+δ} powders. Iodometric titration indicates the room temperature oxygen content to be 5.31(1) for R = Y and 5.14(1) for R = Ho. Most of the XRD reflections of the YBaCo₂O_{5+δ} could be indexed based on a tetragonal unit cell with a = 3.878(1) Å and c =7.498(1) Å. Extra reflections marked with "s" belong to the 3 × 3 × 1 superstructure caused by the ordering of oxygen vacancies in Y–O layer [16,17,22]. The HoBaCo₂O_{5+δ} sample exhibited XRD pattern very similar to that of YBaCo₂O_{5+δ} and also could be indexed based on the tetragonal unit cell with a = 3.882(1) Å and c = 7.488(1) Å. In particular, the inset in Fig. 1 illustrates that HoBaCo₂O_{5+δ} also has superstructure reflections

Fig. 1. Comparison of the XRD patterns of $YBaCo_2O_{5+\delta}$ and $HoBaCo_2O_{5+\delta}$.

similar to that of YBaCo₂O_{5+ δ}. This can be explained by a similar ionic radii between Y (r = 1.019 Å (8-fold coordination), 1.08 Å (11-fold coordination)) and Ho (r = 1.015 Å (10-fold coordination), 1.12 Å (12-fold coordination)) [23]. However, further electron diffraction analysis will be necessary to understand the superstructures of the HoBaCo₂O_{5+ δ} sample. Neutron diffraction studies are also underway to better understand the various super-structures formed due to the ordering of oxygen vacancies.

Fig. 2 illustrates the in situ XRD patterns of the YBaCo₂O_{5+ δ} sample recorded during heating from 25 to 800 °C in air. Although the pristine YBaCo₂O_{5+ δ} phase was stable up to 700 °C, it showed several reflections (marked as *) from secondary phases at 800 °C, which developed with dwelling time. To analyze the secondary phase more clearly, fresh YBaCo₂O_{5 $\pm\delta$} powders were placed on top of a Pt crucible and heated at 800 °C in air for extended times. After heating at 800 °C for 12 h, a significant amount of the secondary phases was developed, which could be indexed as BaCoO₃ (JCPDS 52-1612) [24], YCoO₃ (JCPDS 52-0137) [25], along with a small amount of unknown impurities in Fig. 3(a). Furthermore, the pristine $YBaCo_2O_{5+\delta}$ layered-perovskite phase was fully decomposed after dwelling at 800 °C for 3 days. Similarly, HoBaCo₂O_{5+ δ} showed phase decompositions into BaCoO₃ (JCPDS 52-1612), HoCoO₃ [26], and a small amount of unknown impurities in Fig. 3(b). From these results, it can be concluded that the following major decomposition reactions occur at 800 °C in air:

$$YBaCo_2O_{5+\delta} \rightarrow YCoO_3 + BaCoO_{3-z}$$
(1)

$$HoBaCo_2O_{5+\delta} \rightarrow HoCoO_3 + BaCoO_{3-z}$$
(2)

The decomposition of the RBaCo₂O_{5+ δ} (R = Y and Ho) at 800 °C in air is reported here for the first time to the best of our knowledge. However, both YBaCo₂O_{5+ δ} and HoBaCo₂O_{5+ δ} samples were stable as indicated by their XRD patterns after heating up to 800 °C in nitrogen

Fig. 2. In situ XRD patterns of YBaCo₂O_{5+ δ} recorded on heating in air. Reflections belonging to superstructure and secondary phases are marked with "s" and *, respectively.

Download English Version:

https://daneshyari.com/en/article/1297941

Download Persian Version:

https://daneshyari.com/article/1297941

Daneshyari.com