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We examine the space charge layer formation at metal/ionic conductor interfaces by solving Poisson's
equation using defect energetics calculated from first principles. The scheme is applied to zirconia, and we
find that oxidizing atmosphere and high valence band offset result in negative space charge accumulation at
the interface, while reducing atmosphere and low valence band offset result in positive charge accumulation.
This is explained in terms of the alignment of the Fermi levels in the metal and the ionic conductor.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, an ever increasing number of works on ionic
transport in solids have demonstrated that the conductivity can
sometimes be modified drastically through the introduction of inter-
faces (see, e.g., Refs. [1–3] and references therein). This has opened up
whole new possibilities for materials and device design, with applica-
tions in electrochemical devices such as batteries and fuel cells. Inmany
cases, these phenomena have been explained in terms of the space
charge model [1], where space charge layers are formed adjacent to
charged interface “cores”. The concept has been applied widely to ionic
conductor/ionic conductor and ionic conductor/insulator interfaces, as
well as grain boundaries. However, despite the ubiquitousness of the
metal/ionic conductor interfaces in electrochemical devices, relatively
few works have dealt with the space charge layer formation in such
systems [4–6]. The few available works have reported decreases in
conductivity adjacent to the interface due to carrier depletion [5,6]. The
present issue is to circumvent this negative effect on conduction and to
see if it is possible to enhance the conductivity atmetal/ionic conductor
interfaces.

In this work, we take a theoretical approach to this problem, and
attempt to clarify when, why and to what extent space charge layers
are formed at the metal/ionic conductor interface. The defect
energetics calculated from first principles are coupled with a self-
consistent solution of Poisson's equation to calculate space charge
profiles. We examine how the polarity and extent of space charge

layers depend on the atmosphere (temperature and partial pres-
sures), as well as the valence band offset (VBO) at the interface. We
will consider yttria stabilized zirconia (YSZ) as a concrete example,
but it should be noted that this scheme and the general understanding
obtained from it are applicable to anymetal/ionic conductor interface.
Furthermore, the present work is also relevant in the context of
semiconductor devices, as ionic solids such as zirconia and hafnia (the
so-called high-k oxides) have come to be used as the oxide layer in
metal-oxide-semiconductor field effect transistors (MOSFETs).

2. Computational methodology

Ion conduction in YSZ occurs through oxygen vacancies, which are
generated by doping with yttria (Kröger–Vink notation is used to
represent point defects hereafter):

Y2O3 →
2ZrO2 2Y′Zr + V••

O + 3Ox
O: ð1Þ

Trivalent Y ions replace tetravalent Zr ions in the lattice, and
oxygen vacancies are generated to satisfy charge neutrality. However,
this is not the case at interfaces, where in general, local charge
neutrality is violated in order to keep the electrochemical potential
constant. We will show how to handle this situation below.

We consider doubly positive and neutral oxygen vacancies (VO
• •

and VO
x), doubly negative and neutral oxygen interstitials (Oi

″ and Oi
x),

yttrium dopants (YZr
′ ), conduction band electrons (e′), and valence

band holes (h•). We do not consider singly charged defects because of
their theoretically predicted negative-U behavior [7–10] (i.e., singly
charged defects are unstable with respect to disproportionation into
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doubly charged and neutral defects, and would therefore exist in
negligible amounts).

The concentration of a point defect D with charge q is written as

Dq� �
=

nD

Vf :u:
×

exp −ΔGf Dq� �
= θ

� �
1 + ∑

q′exp −ΔGf Dq′
n o

= θ
� 	

;
ð2Þ

whereΔGf{Dq} is the formationenergy of thedefectDwith charge q,nD is
thenumber of possible defect sites in the lattice per formula unit of ZrO2,
Vf. u. is the volume per formula unit, q′ denotes possible charge states of
the defect, and θ=kBT where kB is the Boltzmann constant and T is the
absolute temperature (see Appendix A for derivation). We use this
equation for oxygen vacancies and interstitials. On the other hand, we
consider Y′Zr immobile and that its concentration is determined by the
initial dopant distribution. The assumption that cations are immobile is
reasonable in the temperature range considered in this work [11].

We employ VASP code [12,13] based on density functional theory
(DFT) for calculation of defect formation energies. The projector
augmented wave method is used to describe the ion–electron
interactions. A plane wave energy cutoff of 500 eV is chosen for the
wavefunction expansion. The exchange–correlation functional based
on the generalized gradient approximation by Perdew et al. [14] is
employed. A supercell consisting of 32 cubic ZrO2 units is used for the
calculations. The Gaussian smearing method is employed with a
2×2×2 Monkhorst–Pack mesh for k-point sampling. We apply
Makov–Payne correction for the calculation of the system with a
charged vacancy [15].

We note here that this work suffers somewhat from thewell known
shortcoming of present-day DFT methods in reproducing the band gap
[16]. In fact, the calculated band gap of cubic zirconia is 3 eV, while
experiments report values in the range of about 5–7 eV [17,18]. To
correct for this discrepancy, we simply shift up the conduction band
minimum (CBM) until the gap reaches 5 eV while keeping the valence
band maximum (VBM) and defect levels fixed to the calculated values.
This is obviously an approximation thatwe are forced tomake, and thus
we limit ourselves to semi-quantitative analysis of the results. More
sophisticated methods are being explored to overcome this problem
(see, e.g., Ref. [16] and references therein), but thosemethods aremuch
more computationally demanding and their reliability has not been
tested as rigorously as conventional DFT methods.

The defect formation energies are obtained according to, e.g., Refs.
[19–21] as

ΔGf Vx
O

� �
= 5:56eV + μ O; ð3Þ

ΔGf V••
O

� �
= −0:70eV + μ O + 2ΔEF; ð4Þ

ΔGf Ox
i

� �
= 4:10eV + μ O; ð5Þ

ΔGf O″
i

n o
= 4:65eV−μ O−2ΔEF; ð6Þ

where μO is the oxygen chemical potential with respect to half that of
an isolated oxygen molecule at 0 K and ΔEF(=EF−EV) is the position
of the Fermi level EF with respect to the VBM EV. Volume change and
vibrational entropy due to defect formation are not considered here
(this is a good approximation in most cases [20]). Note that these
equations do not assume any type of “mechanism” such as cation
doping for the generation of defects. Such effects are taken into
account as changes in the value of EF and μO. When considering a
system in equilibrium with the gas phase, μO is related to the
temperature T and partial pressure pO2

of oxygen gas as

μ O T ;pO2

� 	
= μ O T ;p∘ð Þ + 1

2
kBT ln

pO2

p∘


 �
; ð7Þ

where p∘ is an arbitrary reference pressure. μO(T,p∘) can be obtained
from thermochemical tables [22]. We do not consider defect–defect
and defect–dopant interactions in this work, and use the formation
energy of an isolated vacancy and interstitial in all concentration
calculations. However, it should be noted that electrostatic interac-
tions between charged defects are taken into account in a mean-field
way through the value of ΔEF (ΔEF corresponds to the electrostatic
potential, which we determine from the charge density; the explicit
relation will be given later).

In addition, the concentration of electrons and holes are written as

e′½ � = NCexp − EC−EFð Þ= θ½ �
= NCexp − ΔEgap−ΔEF

� 	
= θ

h i
;

ð8Þ

h•� �
= NVexp − EF−EVð Þ= θ½ �
= NVexp −ΔEF = θ½ �; ð9Þ

where NC and NV are the effective density of states of the conduction
and valence bands, EC is the position of the CBM, EV is that of the VBM,
EF is the Fermi level, ΔEgap(=EC−EV) is the band gap, and ΔEF is the
Fermi level measured from the VBM. NC and NV are related to electron
and hole effective masses in the band edges as

NC Vð Þ = 2
2πme hð Þθ

h2


 �
3
2; ð10Þ

where me and mh are electron and hole effective masses and h is the
Planck constant. Here, we simply approximate electron and hole
masses with the free electron mass. In this work, these values have
very little impact on the results, because hole and electron
concentrations turn out to be negligibly small compared to the
dominant charged defects in each case. Using the above equations, we
can now calculate the total charge density

ρ = ∑
D;q

q Dq� �
+ h•� �

− e′
� � ð11Þ

as a function of pO2
, T, and ΔEF.

In bulk, ΔEF is determined so as to satisfy charge neutrality (ρ=0)
under given pO2

and T [20]. Fig. 1 shows the variation of ΔEF with
respect to the oxygen partial pressure calculated for 10 mol% YSZ (20%
of Zr4+ sites are substituted by Y3+) at 300 K and 1000 K. Low oxygen
partial pressure and high temperature (reducing atmosphere) result
in higher ΔEF. Fig. 2 shows the Brouwer diagrams (oxygen partial
pressure vs. defect concentration relationship) calculated using these
ΔEF values. The major defect is the oxygen vacancy introduced
through the defect reaction of Eq. (1).

In situations where the bulk periodicity is broken, such as at an
interface, we must consider spacial variations in the electrostatic
potential. In this work, we consider a simple parallel capacitor structure

Fig. 1. Fermi level position in bulk YSZ with respect to the oxygen partial pressure at
300 K and 1000 K.
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