

Available online at www.sciencedirect.com

Solid State Ionics 178 (2007) 667-670

www.elsevier.com/locate/ssi

Proton induced ferroelastic-superprotonic phase transition in $M_3H(XO_4)_2$

Tadao Ishii

Graduate School of Natural Science and Technology, Okayama University, Tsushimanaka 3-1-1, Okayama 700-8530, Japan

Received 26 August 2006; received in revised form 15 January 2007; accepted 4 February 2007

Abstract

A mechanism of the strain transition in $M_3H(XO_4)_2$, especially in $Rb_3H(SeO_4)_2$, involved in the ferroelastic-superprotonic phase transition is proposed where a coupling between strain and mobile protons plays a crucial role. The two dimensional Kagome lattice on the ab-plane is extracted for proton's pathway, and the pair approximation of the cluster variation method and path probability method is applied to evaluate thermodynamics and proton dynamics: the first-order long-range strain transition and the strain-involved dc-conductivity are qualitatively discussed. Both behaviors suggest the present proposed mechanism of the ferroelatic-superprotonic phase transition. © 2007 Elsevier B.V. All rights reserved.

Keywords: Strain transition of Rb₃H(SeO₄)₂; Proton-strain coupling; Proton hopping; CVM; PPM

1. Introduction

So far, different types of ionic conductivity mechanisms have been reported. One is the conventional ion hopping where mobile ions distributed on a sublattice move due to an excitation by thermal phonons as typically seen in α -AgI. The paddlewheel (cogwheel) mechanism found in the high temperature rotor phase of, for example, fcc Li₂SO₄, is of another type such that cation mobility is enhanced by a strong coupling of cations to the thermally excited rotational motion of translationally immobile sulphate ions [1,2].

It has been reported that $Rb_3H(SeO_4)_2$ crystals exhibit a transition from ferroelastic to superprotonic (paraelastic) phase [3]. The conduction mechanism in the high temperature phase is considered to be associated with the rotation of selenates [4]. Ito and Kamimura [5] proposed a mechanism of proton conduction in the hydrogen-bonded crystals M₃H(XO₄)₂ [M=Rb, Cs, X=S, Se] in the high temperature paraelastic phase such that two kinds of defect states $H_2XO_4^{(+e)}$ and $XO_4^{(-e)}$ are formed thermally by breaking of a hydrogen-bond at around 0.26[eV], and the two defect states independently move via a successive proton tunneling among hydrogen bonds. Recently the relaxation of spontaneous strain has been explicitly and quantitatively reported in crystalline $Rb_3H(SeO_4)_2$ [6,7] as well as Tl_2SeO_4 [8], which is related to the ferroelastic and superionic transition. Also it has been confirmed even in the low temperature ferroelastic phase that proton conduction exists [4,7].

On the other hand, the local (short-range) distortion has experimentally been found in the superionic transition process, for example, in CuBr, AgI and PbF₂ materials [9,10]. The mechanism was proposed as that pairs of mobile ions induce a local distortion [11-13]. Quite recently we have preliminary discussed a release of the long-range strain by means of mobile ions in ferroelastic materials and proposed a mechanism of the strain transition [14].

The mobile ions involved in the ferroelastic-superionic phase transitions are H^+ in Rb₃H(SeO₄)₂ and Tl⁺ ions in Tl₂SeO₄. Thus in this paper, a mechanism of the long-range strain transition and the associated conductivity behavior will be discussed based on the classical hopping, specifically by paying attention to $Rb_3H(SeO_4)_2$.

2. Models and free energy

2.1. Model

Since the electrical conductivities along the a- and b-axes in $Rb_3H(SeO_4)_2$ are about 10^2 times larger than that along the c*-axis[15], one may consider a two-dimensional model system. Now let us deal with the Kagome lattice on the abplane [14], which forms a pathway of protons in hexagonal

E-mail address: ishii@mech.okayama-u.ac.jp.

^{0167-2738/\$ -} see front matter © 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.ssi.2007.02.008

systems of $M_3H(XO_4)_2$ [5]. On this Kagome lattice consisting of three sublattices A, B and C, interacting lattice gas ions (lattice liquid) classically hop, where at ground state the A sublattice is fully occupied and the other two sublattices are empty (Fig. 1). In the model system concerned, we consider a coupling between the order parameter and displacement, and apply the pair approximation of the cluster variation method (CVM) [16,17]. We assume here that the probability of finding protons both on B sublattice and C sublattice is equal.

2.2. Free energy

Now let us introduce a proton-strain coupling. The force exerted on a selenate by protons is given by

$$F_{x(y)} = \sum_{\alpha = A, B, C} K_{x(y)}^{\alpha} x_1^{\alpha}$$

$$\tag{1}$$

where $K_{x(y)}^{\alpha}$ is a proportionality constant (Kanzaki force [18,19]) in the x(y)-direction, taken parallel to $a_m(b_m)$ axis, respectively, and the superscript α means the sublattice A, B or C shown in Fig. 1. The quantity x_1^{α} is the probability of finding a proton (i=1) on α -site. Then we approximate a triangle by the equilateral triangle to obtain

$$F_x = -\frac{3c}{2}K\xi \ , \ F_y = \frac{3\sqrt{3}c}{2}K\xi \ , \ K = K_{x(y)}^{\alpha}$$
(2)

in terms of the order parameter

$$\xi = x_1^A - x_1^C \ , \ x_1^C = x_1^B \tag{3}$$

where $K_{x(y)}^{\alpha}$ is isotropically taken as in Eq. (2) and c=1/3 is the proton density per site. In the superprotonic phase at $T>T_c$ in which $\xi=0$, it is naturally assumed that F=0. Utilizing Eq. (2), we have the strain energy per unit cell composed of three sites A, B and C:

$$H = 2\left\{\frac{1}{2}\mu(\Delta \boldsymbol{R})^2 - \Delta \boldsymbol{R} \cdot \boldsymbol{F}\right\}$$
(4)

where μ is the force constant between a selenate and protons and ΔR is the associated displacement vector. By minimizing

Fig. 1. Kagome lattice in the paraelastic phase.

Fig. 2. Temperature dependence of (a) the order parameter and (b) the spontaneous strain: the normalized critical temperature is $T_{c,nor}=2.09$.

H with respect to $\Delta \mathbf{R}$, one has $\Delta \mathbf{R} = \mathbf{F}/\mu$ and then obtains the equilibrium energy

$$H = -\varepsilon \frac{1}{2}h\xi^2 , \ h = \frac{2K^2}{\varepsilon\mu}$$
(5)

with ε being the interaction energy between the nearest neighbor protons.

Now from CVM applied to the Kagome lattice, we have the free energy per unit cell given by

$$f = 2\varepsilon \left(y_{11}^{AB} + y_{11}^{BC} + y_{11}^{CA} \right) - k_B T \\ \times \left[3 \sum_{\substack{i = 1, \nu \\ x = A, B, C}} L(x_i^x) - 2 \sum_{\substack{i, j = 1, \nu \\ xx' = AB, B, C, CA}} L(y_{ij}^{xx'}) \right] - \varepsilon \frac{1}{2} h \xi^2$$
(6)

where $L(x)=x\ln x - x$ and $y_{ij}^{\alpha\alpha'}$ is the pair probability of finding particles *i* and *j* on α and α' nearest neighbor sites, respectively, with *i*, *j*=1 (proton) and *v* (vacancy). The first term in the rhs of Eq. (6) is the interaction energy, the second term is the energy related to the entropy due to the on-site and pair probabilities under the temperature $\beta^{-1} = k_{\rm B}T$ with $k_{\rm B}$ being the Boltzmann constant, and the last term is exactly the strain energy (Eq. (5)). Download English Version:

https://daneshyari.com/en/article/1298895

Download Persian Version:

https://daneshyari.com/article/1298895

Daneshyari.com