

Contents lists available at SciVerse ScienceDirect

Coordination Chemistry Reviews

journal homepage: www.elsevier.com/locate/ccr

Review

The competition between chemistry and biology in assembling iron–sulfur derivatives. Molecular structures and electrochemistry. Part I. $\{Fe(S^{\gamma}_{Cvs})_4\}$ proteins

Piero Zanello*

Dipartimento di Chimica dell'Università di Siena, Siena, Italy

Contents

1.	Intro	duction		1778
2.	Singl	e-{Fe(S ^γ _{Cvs}	;) ₄ } proteins	1778
	2.1.	Rubredo	xins	1778
		2.1.1.	Bacteria rubredoxins	1778
		2.1.2.	Archaea rubredoxins	1789
		2.1.3.	Eukaryota rubredoxins	1791
	2.2.	Flavorub	redoxins	1791
3.	Doub	ole-{Fe(S ^γ C _V	ys)4} proteins	1792
	3.1.	Bacteria	2Fe-rubredoxins	1792
	3.2.	Rubreryt	thrins	1792
		3.2.1.	Bacteria rubrerythrins	1793
		3.2.2.	Archaea rubrerythrins	1793
	3.3.	Bacteria	nigerythrins	1794
	3.4.	Desulfofe	errodoxins	1795
		3.4.1.	Bacteria desulfoferrodoxins	1795
		3.4.2.	Archaea desulfoferrodoxins	1797
	3.5.	Bacteria	desulforedoxins	1797
4.	Synth	hetic iron-t	etrathiolate complexes	1798
	4.1.	Biomime	etic iron-tetrathiolate bearing aryl substituents	1798
	4.2.	Biomime	etic iron-tetrathiolate bearing alkyl substituents	1799
	4.3.	Biomime	etic iron-tetrathiolate bearing oligopeptide ligands	1801
		4.3.1.	Tripeptide ligands	1801
		4.3.2.	Tetrapeptide ligands	1801
		4.3.3.	Pentapeptide ligands	1801
		4.3.4.	Hexapeptide ligands	1802
5.	Conc	lusions		1803
	Ackn	owledgem	ent	1803
	Refe	rences		1803

ARTICLE INFO

Article history: Received 9 December 2012 Accepted 1 February 2013 Available online 14 February 2013

$$\label{eq:keywords:} \begin{split} &\textit{Keywords:} \\ &\textit{Single-}\{Fe(S^{\gamma}_{Cys})_4\} \text{ proteins} \\ &\textit{Double-}\{Fe(S^{\gamma}_{Cys})_4\} \text{ proteins} \\ &\textit{Molecular structures} \\ &\textit{Electrochemistry} \end{split}$$

ABSTRACT

In the present review, we focus on the relationships between molecular geometry and electron transfer ability of the different classes of proteins bearing the $\{Fe(S^{\gamma}_{Cys})_4\}$ core as active site. We will highlight the role played by the amino acid composition in determining the redox activity of rubredoxins, flavorubredoxins, rubrerythrins, nigerythrins, desulfoferrodoxins and desulforedoxins, including, when available, their mutants. We will conclude with the electrochemical and structural aspects of synthetic FeS_4 derivatives able to mimic the above cited proteins (usually the rubredoxins).

© 2013 Elsevier B.V. All rights reserved.

^{*} Present address: Dipartimento di Biotecnologie, Chimica e Farmacia, Via A. De Gasperi 2, 53100 Siena, Italy. Tel.: +39050879202 (private number). E-mail addresses: zanello@unisi.it, piero.zanello@gmail.com

1. Introduction

The surprising structural analogies between biological iron–sulfur complexes and their synthetic analogues constitute an evergreen topic in bioinorganic chemistry dating at least from the last 40/50 years [1]. Iron–sulfur proteins play a crucial role in biological processes such as dinitrogen fixation, photosynthesis and respiration. Since most biological iron–sulfur complexes act as electron transfer mediators, a number of papers have been devoted to their redox properties [1n,2], as well as to those of their synthetic models [1n,3]. In fact, electron transfer processes not only trigger the transformation of solar into chemical energy for living organisms, but in biological processes such as photosynthesis, respiration, and nitrogen fixation the priority and the intensity of electron flows is finely controlled by the redox potential of the proteins designed for such processes.

The commonest iron–sulfur wild-type assemblies can be classified as [4]:

- single $\{Fe(S^{\gamma}_{Cys})_4\}$ (in rubredoxins and flavorubredoxins) and double $\{Fe(S^{\gamma}_{Cys})_4\}$ (in rubrerythrins, nigerythrins, desulfoferrodoxins and desulforedoxins);

- binuclear {[Fe₂S₂](S^γ_{Cys})₄} in 2Fe ferredoxins;
- binuclear { $[Fe_2S_2](S^{\gamma}_{Cys})_2(N^{\delta}_{His})_2$ } in Rieske ferredoxins;
- trinuclear { $[Fe_3S_4](S_{CVS})_3$ } in 3Fe ferredoxins;
- tetranuclear { $[Fe_4S_4](S^{\gamma}_{Cys})_4$ } in 4Fe ferredoxins and high potential iron–sulfur proteins (HIPIPs);
- heptanuclear {[Fe $_3$ S $_4$](S $_{\text{Cys}}$) $_3$ +[Fe $_4$ S $_4$](S $_{\text{Cys}}$) $_4$ } in 7Fe ferredoxins;
- octanuclear 2 { $[Fe_4S_4](S_{CVS})_4$ } in 8Fe ferredoxins;
- octanuclear $\{[Fe_8S_7](S^{\gamma}_{Cys})_6\}$ in P cluster of nitrogenase FeMoprotein;
- octanuclear {([MoFe $_7S_9$] homocitrate)S $_{Cys}^{\gamma}$ N $_{His}^{\delta}$ } in nitrogenase FeMo-cofactor.

Fig. 1. The Woese phylogenetic tree of life for living organisms (NASA image).

As imaginable from the presentation, the present review is devoted to proteins containing $\{Fe(S_{Cys})_4\}$ core(s), in particular to those of known molecular structure.

2. Single- $\{Fe(S_{Cvs}^{\gamma})_4\}$ proteins

2.1. Rubredoxins

Rubredoxins are small proteins of molar mass about 6000 Da which contain an iron atom tetrahedrally coordinated to the sulfur atoms of four cysteine residues. Their biological role is still unclear, but it is widely accepted that they participate in electron transfer processes. In fact they are involved in a number of important biochemical reactions [5].

Rubredoxins are located in the protein components of several microorganisms. In this connection, in order to account for the (not always familiar to chemists) nomenclature of some biological species which will appear in the text, it may be useful to consider the recent classification of the three domains which characterize the living organisms, Fig. 1 [6].

2.1.1. Bacteria rubredoxins

The first *rubredoxin* was isolated from the dinitrogen-fixing anaerobic bacterium *Clostridium pasteurianum* (from hereafter *CpRd*) by Lovenberg and Sobel in 1965, who also assigned the name

Table 1 Amino acid sequence of *CpRd*.

-	•														
Residue	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Amino acid	Met	Lys	Lys	Tyr	Thr	Cys	Thr	Val	Cys	Gly	Туг	Ile	Туг	Asp	Pro
Residue	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Amino acid	Glu	Asp	Gly	Asp	Pro	Asp	Asp	Gly	Val	Asn	Pro	Gly	Thr	Asp	Phe
Residue	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Amino acid	Lys	Asp	Ile	Pro	Asp	Asp	Trp	Val	Cys	Pro	Leu	Cys	Gly	Val	Gly
Residue	46	47	48	49	50	51	52	53	54			-			
Amino acid	Lys	Asp	Glu	Phe	Glu	Glu	Val	Glu	Glu						

Source: [9].

Bond distances (Å; rounded off to the second decimal figure) and selected bond angles (°) for CpRd in different oxidation states.

Rubredoxin	Bond lengths	;		Bond angles	Reference		
	Fe—S6	Fe—S9	Fe—S39	Fe—S42	S9FeS42	S6FeS39	
Oxidized form							
CpRd (wild-type)	2.24	2.30	2.26	2.24	114.7	112.1	[10e]
CpRd (recombinant)	2.28	2.24	2.28	2.22	112.7	110.1	[10d]
Reduced form							
CpRd (wild-type)	2.38	2.36	2.39	2.30	110.1	112.8	[10e]

Download English Version:

https://daneshyari.com/en/article/1299096

Download Persian Version:

https://daneshyari.com/article/1299096

Daneshyari.com