Contents lists available at ScienceDirect ### **Coordination Chemistry Reviews** journal homepage: www.elsevier.com/locate/ccr #### Review ## Catalysis by 1,2,3-triazole- and related transition-metal complexes Deshun Huang^a, Pengxiang Zhao^{a,*}, Didier Astruc^{b,**} - ^a Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 718-35, Mianyang 621907, Sichuan, China - ^b ISM, Univ. Bordeaux, 351 Cours de la Libération, 33405 Talence Cedex, France #### **Contents** | 1. | Introduction | 146 | |-----|---|-----| | 2. | Coordination modes of triazole and triazolyl ligands with transition metals | 146 | | 3. | Mn-triazole complexes for catalysis | 147 | | | 3.1. Mn-nitrogen coordination | 147 | | 4. | Fe-triazole complexes in catalysis | 148 | | | 4.1. Fe-nitrogen coordination | 148 | | 5. | Ni-triazole complexes in catalysis | 149 | | | 5.1. Ni-nitrogen coordination | 149 | | 6. | Cu-triazole complexes in catalysis | 149 | | | 6.1. Cu-nitrogen coordination | 149 | | | 6.2. Cu-carbene complexes | 150 | | 7. | Ru-triazole complexes in catalysis | 150 | | | 7.1. Ru-nitrogen coordination | 150 | | | 7.2. Ru-carbenes complexes | 151 | | 8. | Rh/Ir-triazole complexes in catalysis | 153 | | | 8.1. Rh/Ir-nitrogen coordination | 153 | | | 8.2. Rh-nitrogen complexes with anionic triazoles | 155 | | 9. | Pd-triazole complexes in catalysis | 155 | | | 9.1. Pd-nitrogen coordination | 156 | | | 9.2. Pd-carbenes complexes | 158 | | | 9.3. Other types of molecular Pd-triazole catalysts | | | | 9.4. Pd-nanoparticle catalysts stabilized by 1,2,3-triazole-containing macromolecules | 160 | | 10. | Au-triazole complexes in catalysis | 161 | | | 10.1. Au-nitrogen coordination | 162 | | | 10.2. Au-carbenes complexes | 162 | | | 10.3. Au-nitrogen complexes with anionic triazoles | 163 | | 11. | Conclusion | 163 | | | Acknowledgements | 163 | | | References | 164 | | | | | #### ARTICLE INFO Article history: Received 10 February 2014 Accepted 7 April 2014 Available online 18 April 2014 Keywords: Catalysis Transition metal Click chemistry Triazole ligand Carbene #### ABSTRACT A short overview of the multiple coordination modes of 1,2,3-triazole- and related transition-metal complexes are provided, then the implication of and catalysis with transition-metal-1,2,3-triazole complexes are detailed with Mn, Fe, Ni, Cu, Ru, Rh, Ir, Pd, and Au catalysts including various ligand coordination modes and mechanistic features. © 2014 Elsevier B.V. All rights reserved. E-mail addresses: zhaopengxiang831015@126.com (P. Zhao), didier.astruc@u-bordeaux.fr (D. Astruc). ^{*} Corresponding author. Tel.: +86 8163369780. ^{**} Corresponding author. #### 1. Introduction The 1,2,3-triazole heterocycle, known since the end of the 19th century, is now a common heterocyclic ligand in chemistry and biology [1]. Relatively few studies have been reported before the year 2000 due to the limited availability of functional triazole derivatives when the non-selective Huisgens reaction was used for their synthesis [1b,1c]. The breakthrough in triazole chemistry came in the early 2000s with a novel concept, that of "click" chemistry, that was first fully presented by Sharpless' group [2,3]. The "click" reactions described chemistry tailored to quickly and reliably generate substances by linking small units together under "green" conditions. This has proved to be a powerful concept allowing molecule fragments to assemble. Indeed, the most popular reaction representing the "click" chemistry concept is the Cucatalyzed alkyne-azide (CuAAC) reaction with the regioselective formation of 1,4-disubstituted 1,2,3-triazoles [4]. Besides, the Rucatalyzed alkyne-azide (RuAAC) reaction was later disclosed to also regioselectively form 1,2,3-triazoles, but at this time with 1,5disubstitution [5]. Thanks to these modular, facile and high-yield methods for the generation of a large number of 1,2,3-triazoles and their derivatives, 1,2,3-triazole heterocyclic chemistry now appears as a new area with potential applications of 1,2,3-triazolemetal complexes in optics, redox sensing, biomedicine and catalysis [6]. Transition-metal triazole and triazolyl complexes have recently present catalytic activity for a number of organic reactions, and the purpose of this review is to survey these properties and catalytic reactions. ## 2. Coordination modes of triazole and triazolyl ligands with transition metals 1,2,3-Triazoles bearing several donor sites are potentially versatile ligands for metal coordination [7]. Generally, there are mainly three modes with which triazole ligands combine with transition metals (Figs. 1, 3 and 4). The first mode is through nitrogen coordination of neutral simple triazoles and chelating triazoles (Fig. 1). DFT calculations have shown that *N*3 is a better donor compared to *N*2 [8]. The triazole ligand coordinates to a metal through the *N*3 nitrogen atom either as a monodentate ligand (type A) or as part of a bi- or poly-dentate chelator (type B), when there are other Fig. 1. Simple triazoles and chelating triazoles coordinate to transition metals. Fig. 3. Deprotonated triazolium ligands (NHCs) transition metal complexes. **Fig. 4.** Deprotonated NH 4,5-disubstituted triazolates as anionic ligands in transition metal complexes. donor sites nearby. When the additional donor site is adjacent to N1, coordination through N2 is possible to form a bi- or polydentate chelator (type C) [9]. Thus, for the metal chelators, five- or six-membered cycles are usually formed. Besides, bridging coordination modes with two metals coordinating to two of the nitrogen atoms are possible (types D and E). The second mode is C5 coordination with deprotonated triazoliums to form N-heterocyclic carbenes (NHCs, Fig. 3). NHCs are a class of well-known, very useful ligands resulting from the deprotonation of imidazolium salts, but members of the family are also obtained by deprotonation of triazolium salts. NHCs are stronger neutral electron donors (σ donors), have a better oxidation stability and undergo easier modification than tertiary phosphines. Therefore, they have been widely used as ligands with success in transition metal catalysis [10]. Imidazolium salts are the most frequently used carbene precursors with metal bounded at the C2 position. Subsequently, imidazole-based carbenes with the metal bonded at the C4(5) position were also first reported by Crabtree and co-workers (Fig. 2) [11]. These carbenes are called "abnormal" N-heterocyclic carbenes (aNHCs), and they are even stronger σ donors than C2-bound "normal" N-heterocyclic carbenes (nNHCs) [12]. The difference between these two classes of carbenes is that free nNHCs have a resonance form with all-neutral formal charges, while the free aNHC are mesoionic (Fig. 2). In 2008, Albrecht and co-workers used 1,3,4-substituted 1,2,3-triazolium salts as precursors for the synthesis of new aNHCs with various transition metals [13]. These abnormal triazolylidene complexes (type F) are expected to have a great potential for the development of new catalysts with unprecedented reactivities. Recently, an example Fig. 2. Imidazole-based nNHCs and aNHCs. #### Download English Version: # https://daneshyari.com/en/article/1299477 Download Persian Version: https://daneshyari.com/article/1299477 <u>Daneshyari.com</u>