

COORDINATION CHEMISTRY REVIEWS

Coordination Chemistry Reviews 250 (2006) 259-272

www.elsevier.com/locate/ccr

Review

Group 4 metallocenes incorporating constrained-geometry carboranyl ligands

Zuowei Xie*

Department of Chemistry, The Chinese University of Hong Kong, Shatin NT, Hong Kong, China

Received 15 December 2004; accepted 13 May 2005 Available online 1 July 2005

Contents

1.	Introduction	259
2.	Metallocenes with linked Cp-carboranyl ligands	263
	2.1. Ligand synthesis	263
	2.2. Metallocenes	263
	2.3. Polymerization of olefins	268
3.	Metallocenes with linked amido(amino)–carboranyl ligands	269
4.	Conclusions and perspectives	271
	Acknowledgments	271
	References	271

Abstract

Ligand modifications have played a crucial role in developing new catalyst precursors for optimizing polymerization activity as well as polymer properties. o-Carborane is a highly versatile molecule and can be converted into the closo- $C_2B_{10}H_{10}^{2-}$, nido- $C_2B_9H_{11}^{2-}$, nido- $C_2B_{10}H_{12}^{2-}$, and arachno- $C_2B_{10}H_{12}^{4-}$ ligands which are capable of being bonded to metal ions in σ -, η^5 -, η^6 -, and η^7 -fashion, respectively. Such unique features make the replacement possible of either a cyclopentadienyl or an amido unit in the traditional CpSiN constrained-geometry ligands, by a carboranyl moiety. These modifications lead to a novel class of constrained-geometry ligands bearing a carboanion functionality and to a new version of constrained-geometry ligand frameworks incorporating a dicarbollyl moiety. These ligands provide interesting opportunities for the design of metallocenes with new metal/charge and π/σ component combinations and for the study of the role of carborane in catalysis. Achievements, problems and perspectives in this new and rapidly growing field are discussed in this article. © 2005 Elsevier B.V. All rights reserved.

Keywords: Carborane; Catalyst; Cyclopentadienyl; Group 4 metal; Insertion; Metallacarborane; Metallocene; Olefin; Polymerization

1. Introduction

Ligand modifications have played a crucial role in developing new catalyst precursors for optimizing polymerization activity as well as polymer properties, such as stereoregularity, molecular weight, bulky and polar comonomer incorporation, and microstructure [1]. It has

been documented that a ligand containing bifunctional groups often offers complexes with some additional advantage [2]. Recently developed constrained-geometry ligands containing both monocyclopentadienyl and σ -heteroatom components have attracted considerable attention [3]. Group 4 metallocenes derived from these ligands are very active catalysts (so called constrained-geometry catalyst (CGC)) for the copolymerization of ethylene with α -olefins due to the increased electron-deficiency and more open coordination environment of the central metal ions by displacing one Cp⁻

^{*} Tel.: +852 26096269; fax: +852 26035057. E-mail address: zxie@cuhk.edu.hk.

 $\begin{tabular}{ll} Table 1 \\ Selected structural data of metallocenes with constrained-geometry carboranyl ligands \\ \end{tabular}$

Compound	M–X (length, Å)		X–M–X′ (angle, °)		Ref.
$[\eta^5 : \sigma\text{-Me}_2C(C_5H_4)(C_2B_{10}H_{10})]Ti(NMe_2)_2$	Ti–C (ring) Ti–C (cage) Ti–N	2.369 (3) 2.209 (2) 1.894 (2)	Cent-Ti-C (cage) N-Ti-N C (ring)-C-C (cage)	105.0 106.1 (2) 108.5 (2)	[15]
$[\eta^5\text{:}\sigma\text{-}Me_2C(C_5H_4)(C_2B_{10}H_{10})]TiCl(NMe_2)$	Ti–C (ring) Ti–C (cage) Ti–N Ti–Cl	2.341 (2) 2.179 (2) 1.862 (2) 2.277 (1)	Cent-Ti-C (cage) C (ring)-C-C (cage) Cl-Ti-N	105.7 108.5 (2) 113.4 (1)	[15]
$[\eta^5{:}\sigma\text{-}Me_2C(C_5H_4)(C_2B_{10}H_{10})]Zr(NMe_2)_2$	Zr–C (ring) Zr–C (cage) Zr–N	2.510 (3) 2.343 (3) 2.024 (3)	Cent–Zr–C (cage) N–Zr–N C (ring)–C–C (cage)	100.3 113.1 (2) 110.7 (2)	[15]
$[\eta^5{:}\sigma\text{-}Me_2Si(C_5H_4)(C_2B_{10}H_{10})]Zr(NMe_2)_2$	Zr–C (ring) Zr–C (cage) Zr–N	2.519 (5) 2.353 (4) 2.015 (4)	Cent-Zr-C (cage) N-Zr-N C (ring)-Si-C (cage)	108.4 110.6 (2) 105.2 (2)	[15]
$[\eta^5{:}\sigma\text{-}Me_2Si(C_5H_4)(C_2B_{10}H_{10})]Zr(NEt_2)_2$	Zr–C (ring) Zr–C (cage) Zr–N	2.543 (2) 2.384 (2) 2.031 (2)	Cent–Zr–C (cage) N–Zr–N C (ring)–Si–C (cage)	107.6 110.1 (1) 104.7 (1)	[15]
$[\eta^5{:}\sigma\text{-}Me_2C(C_9H_6)(C_2B_{10}H_{10})]Ti(NMe_2)_2$	Ti–C (ring) Ti–C (cage) Ti–N	2.391 (3) 2.196 (3) 1.896 (3)	Cent-Ti-C (cage) N-Ti-N C (ring)-C-C (cage)	105.4 104.5 (2) 108.7 (2)	[15]
$[\eta^5{:}\sigma\text{-}Me_2C(C_9H_6)(C_2B_{10}H_{10})]Zr(NMe_2)_2$	Zr–C (ring) Zr–C (cage) Zr–N	2.521 (8) 2.326 (7) 2.016 (8)	Cent–Zr–C (cage) N–Zr–N C (ring)–C–C (cage)	101.6 108.0 (3) 109.4 (6)	[15]
$[\eta^5{:}\sigma\text{-}Me_2C(C_9H_6)(C_2B_{10}H_{10})]Zr(NEt_2)_2$	Zr–C (ring) Zr–C (cage) Zr–N	2.538 (2) 2.361 (2) 2.030 (2)	Cent–Zr–C (cage) N–Zr–N C (ring)–C–C (cage)	100.6 106.6 (1) 110.5 (2)	[15]
$[\eta^5{:}\sigma\text{-}Me_2Si(C_9H_6)(C_2B_{10}H_{10})]Zr(NMe_2)_2$	Zr–C (ring) Zr–C (cage) Zr–N	2.541 (5) 2.348 (5) 2.019 (4)	Cent–Zr–C (cage) N–Zr–N C (ring)–Si–C (cage)	109.9 107.3 (2) 104.8 (2)	[15]
$[\eta^5{:}\sigma\text{-}Me_2Si(C_9H_6)(C_2B_{10}H_{10})]Zr(NEt_2)_2$	Zr–C (ring) Zr–C (cage) Zr–N	2.561 (4) 2.362 (4) 2.029 (4)	Cent–Zr–C (cage) N–Zr–N C (ring)–Si–C (cage)	107.5 107.6 (2) 105.0 (2)	[15]
$[Me_{3}NH][\{\eta^{5}:\sigma\text{-}Me_{2}C(C_{9}H_{6})(C_{2}B_{10}H_{10})\}ZrCl(\mu\text{-}Cl)_{1.5}]_{2}$	Zr–C (ring) Zr–C (cage) Zr–Cl(μ) Zr–Cl (terminal)	2.539 (14) 2.367 (12) 2.634 (3) 2.449 (4)	Cent–Zr–C (cage) C (ring)–C–C (cage)	98.4 111.0 (14)	[15]
$\label{eq:linear_equation} \left\{ Li(THF)_2 \right\} \! \left\{ [\eta^5 : \! \sigma \text{-Me}_2 C(C_9 H_6) (C_2 B_{10} H_{10})] Zr Cl(\mu \text{-Cl})_{1.5} \right\}_2$	Zr–C (ring) Zr–C (cage) Zr–Cl(µ) Zr–Cl (terminal)	2.527 (9) 2.375 (9) 2.641 (3) 2.424 (3)	Cent–Zr–C (cage) C (ring)–C–C (cage)	99.5 109.6 (7)	[15]
$[Me_2NH_2][\big\{\eta^5{:}\sigma\text{-}Me_2Si(C_9H_6)(C_2B_{10}H_{10})\big\}ZrCl(\mu\text{-}Cl)_{1.5}]_2$	Zr–C (ring) Zr–C (cage) Zr–Cl (μ) Zr–Cl (terminal)	2.545 (12) 2.393 (10) 2.622 (3) 2.401 (3)	Cent–Zr–C (cage) C (ring)–Si–C (cage)	105.4 104.1 (4)	[15]
$[\eta^5{:}\sigma^{-i}Pr_2NB(C_9H_6)(C_2B_{10}H_{10})]Zr(NMe_2)_2$	Zr–C (ring) Zr–C (cage) Zr–N	2.522 (2) 2.345 (2) 2.026 (2)	Cent–Zr–C (cage) N–Zr–N C (ring)-B-C (cage)	103.0 106.4 (1) 114.0 (2)	[23]
$[\eta^5{:}\sigma^{_i}Pr_2NP(C_9H_6)(C_2B_{10}H_{10})]Ti(NMe_2)_2$	Ti–C (ring) Ti–C (cage) Ti–N	2.403 (3) 2.208 (3) 1.889 (3)	Cent-Ti-C (cage) N-Ti-N C (ring)-P-C (cage)	110.0 103.9 (2) 97.7 (1)	[30]
$[\eta^5 : \sigma^{-i} Pr_2 NP(C_9 H_6)(C_2 B_{10} H_{10})] Zr(NMe_2)_2$	Zr–C (ring) Zr–C (cage) Zr–N	2.552 (8) 2.354 (8) 2.020 (7)	Cent–Zr–C (cage) N–Zr–N C (ring)–P–C (cage)	106.6 110.0 (3) 98.7 (3)	[30]
$[\eta^5{:}\sigma^{-i}Pr_2NP(C_9H_6)(C_2B_{10}H_{10})]Hf(NMe_2)_2$	Hf–C (ring) Hf–C (cage) Hf–N	2.551 (8) 2.354 (8) 2.020 (7)	Cent-Hf-C (cage) N-Hf-N C (ring)-P-C (cage)	107.1 107.2 (6) 98.1 (6)	[30]

Download English Version:

https://daneshyari.com/en/article/1299664

Download Persian Version:

https://daneshyari.com/article/1299664

<u>Daneshyari.com</u>