Contents lists available at ScienceDirect

Coordination Chemistry Reviews

journal homepage: www.elsevier.com/locate/ccr

Review

Theories of phosphorescence in organo-transition metal complexes – From relativistic effects to simple models and design principles for organic light-emitting diodes

B.J. Powell

Centre for Organic Photonics and Electronics, School of Mathematics and Physics, The University of Queensland, QLD 4072, Australia

Contents

1.	Introduction	 47
2.	A brief introduction to special relativity, relativistic quantum mechanics, and relativistic effects in chemistry	 49
	2.1. Special relativity	 49
	2.2. Special relativity and quantum mechanics	 50
	2.3. Relativistic effects in atomic physics and chemistry	 50
	2.3.1. Scalar relativistic effects	 51
	2.3.2. Spin–orbit coupling (SOC)	 51
	2.3.3. Phosphorescence	 52
	2.4. Relativity and density functional theory (DFT)	 53
3.	Some common errors made when comparing computational chemistry to experiment	 54
4.	Some key experimental facts	 55
	4.1. <i>M</i> (bpy) ₃	 55
	4.2. lr(ppy) ₃	 55
	4.3. lr(ptz) ₃	 56
	4.4. Conclusions	 58
5.	The pseudo-angular momentum model	 58
	5.1. Warm up: the quantum mechanics of triangles and triskeles and the mapping to an <i>l</i> = 1 angular-momentum Hamiltonian	 58
	5.2. Pseudooctahedral complexes	 59
	5.2.1. Why are pseudooctahedral complexes important?	 60
	5.3. D ₃ complexes, e.g., <i>M</i> (bpy) ₃	 60
	5.4. C ₃ complexes, e.g., Ir(ppy) ₃ and Ir(ptz) ₃	 62
	5.5. C _{2v} , C ₂ and C ₁ complexes: broken trigonal symmetry via excited state localisation or in heteroleptic complexes	 63
	5.5.1. Radiative decay rates	 64
	5.5.2. From D_3 to C_{2v} or C_2 , e.g., $M(bpy)_3$	 64
	5.5.3. From C ₃ to C ₁ , e.g., Ir(ppy) ₃	 65
	5.6. Correlation effects	 65
6.	Density functional approaches	 65
	6.1. <i>M</i> (bpy) ₃	 66
	6.2. Ir(ppy) ₃	 67
	6.3. Fluorination of Ir(ptz) ₃	 69
	6.3.1. The parent complex	 69
	6.3.2. Fluorinated analogues	 71
	6.4. Heteroleptic complexes	 73
	6.5. Degree of metal-to-ligand charge transfer	 74
7.	Conclusions, outlook and future challenges	 74
	7.1. Modelling challenges	 75
	7.1.1. Correlations	 75
	7.1.2. Quantitative prediction of the spin Hamiltonian parameters	 75

http://dx.doi.org/10.1016/j.ccr.2015.02.008 0010-8545/© 2015 Elsevier B.V. All rights reserved.

	7.1.3.	Solvent effects	75
	7.1.4.	Non-radiative decay rates	75
	7.1.5.	Vibronic coupling	76
7.2.	Lessons	learnt	76
	Acknow	ledgements	77
	Reference	ces .	77

ARTICLE INFO

Article history: Received 3 October 2014 Accepted 6 February 2015 Available online 20 February 2015

Keywords: Relativistic density functional theory (DFT) Organic light-emitting diodes (OLEDs) Spin-orbit coupling Scalar relativistic effects Triplet state Radiative decay rate

ABSTRACT

We review theories of phosphorescence in cyclometalated complexes. We focus primarily on pseudooctahedrally coordinated $t_{2\sigma}^6$ metals (e.g., $[Os(II)(bpy)_3]^{2+}$, $Ir(III)(ppy)_3$ and $Ir(III)(ptz)_3$) as, for reasons that are explored in detail, these show particularly strong phosphorescence. We discuss both first principles approaches and semi-empirical models, e.g., ligand field theory. We show that together these provide a clear understanding of the photophysics and in particular the lowest energy triplet excitation, T_1 . In order to build a good model relativistic effects need to be included. The role of spin-orbit coupling is well-known, but scalar relativistic effects are also large - and are therefore also introduced and discussed. No expertise in special relativity or relativistic quantum mechanics is assumed and a pedagogical introduction to these subjects is given. Once both scalar relativistic effects and spin-orbit coupling are included, time dependent density functional theory (TDDFT) provides quantitatively accurate predictions of the radiative decay rates of the substates of T₁ in phosphorescent organotransition-metal complexes. We describe the pseudo-angular momentum model, and show that it reproduces the key experimental findings. For example, this model provides a simple explanation of the relative radiative rates of the substates of T₁, which differ by orders of magnitude. Special emphasis is placed on materials with potential applications as active materials in organic light-emitting diodes (OLEDs) and principles for the design of new complexes are identified on the basis of the insights provided by the theories reviewed. We discuss the remaining theoretical challenges, which include deepening our understanding of solvent effects and, vitally, understanding and predicting non-radiative decay rates.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

There has been long-standing fundamental interest in lowenergy excitations of phosphorescent organo-transition metal complexes [1–4], some examples of which are given in Fig. 1. This interest initially stemmed from the discovery that the emission properties of these complexes can be very different from typical organic molecules, particularly at low temperatures [5–27]. However, interest in the field has grown significantly as the number of potential applications for such complexes have increased. These include dye-sensitised solar cells [28–34], non-linear optics [34], photocatalysis [4,34–37], biological imaging [38–40], chemical and biological sensing [34,38,41–43], photodynamic therapy [34], lightemitting electro-chemical cells [44–47] and OLEDs [2,33,48–55].

For many of these applications a detailed understanding of the lowest energy triplet excitation, T₁, would greatly facilitate the design of better materials. For example, in OLED applications the active organometallic complex is embedded in a host matrix, which transports the charge to the complex. When an excitation is formed on the complex it rapidly decays to the T₁ state. In phosphorescent organo-transition metal complexes strong spin-orbit coupling (SOC) enables fast intersystem crossing. This is estimated to occur in tens to hundreds of femtoseconds [56]. In contrast the lifetimes of the T₁ states, which are discussed in detail below, range from microseconds to milliseconds, i.e., many orders of magnitude slower than the intersystem crossing. Thus, even the generation of singlet excitations rapidly leads to the occupation of T_1 – a process known as triplet harvesting, cf. Fig. 2. Therefore, the design of an active material for an OLED, in large part, amounts to controlling the key properties of T_1 such as its zero field splitting (ZFS), and the radiative and non-radiative decay rates of its three substates. Of course, this is far easier to write than to achieve via the chemical modification of a complex.

In non-relativistic quantum mechanics the conservation of spin dictates that a triplet state may not decay radiatively to a singlet state. However, in relativistic quantum mechanics such processes are allowed due to SOC. Therefore, a proper description of phosphorescence will necessarily involve relativistic effects. In order to keep this review as self-contained as possible, in Section 2 we provide a brief introduction to relativity and its role in chemistry. The topics covered here are not intended to be exhaustive, but rather to give the necessary introduction for non-specialists wanting to read the remainder of the review. Experts may wish to skip over this section. More comprehensive discussions of these subjects can be found elsewhere, for example in the excellent monograph by Dyall and Færgri [57].

Two major approaches have been taken to modelling the phosphorescence in organo-transition metal complexes: phenomenological or semi-empirical approaches, such as ligand field theory, and first principles approaches, primarily based on (relativistic) (time dependent) density functional theory.

Semi-empirical theories have fallen somewhat out of fashion in the theoretical chemistry community since the rise of computational chemistry. However, they have continued to be developed, particularly in the context of strongly correlated electron materials [58]. For example, models involving strong SOC have recently gathered much attention from the solid-state physics community in the context of the iridates [59,60]. In Section 5 we give a modern reformulation of some semi-empirical models of phosphorescent organo-transition metal complexes. This allows us to place several different models in a unified context and explain the consistency of their key predictions. In particular we stress that many of the key properties of the complexes we discuss are unavoidable consequences of their (approximate) (pseudo) trigonal and pseudooctahedral symmetries. These models also explain why (pseudo)trigonal pseudooctahedral t_{2g}^6 complexes are often strongly phosphorescent.

While the semi-empirical theories described in Section 5 provide a powerful unified framework for understanding phosphorescence in organo-transition metal complexes, first principles approaches have the advantage of making more specific predictions for individual complexes. Therefore, in Section 6, we review first principles calculations for phosphorescent organo-transition metal complexes, which have mainly been based on relativistic Download English Version:

https://daneshyari.com/en/article/1300258

Download Persian Version:

https://daneshyari.com/article/1300258

Daneshyari.com