

Contents lists available at ScienceDirect

Coordination Chemistry Reviews

journal homepage: www.elsevier.com/locate/ccr

Review

Jahn–Teller coupling and the influence of strain in T_g and E_g ground and excited states – A ligand field and DFT study on halide $M^{III}X_6$ model complexes $[M = Ti^{III}-Cu^{III}; X = F^-, Cl^-]$

D. Reinen^{a,*}, M. Atanasov^{a,b}, P. Köhler^a, D. Babel^a

^a Chemistry Department, Philipps-University, Hans-Meerwein-Strasse, 35043 Marburg, Hessen, Germany ^b Institute of General and Inorganic Chemistry, Academy of Sciences, 1113 Sofia, Bulgaria

Contents

1.	Introduction and outline		
2.	The vibronic theory		
	2.1. General: $T_g \otimes (\varepsilon_g + \tau_{2g})$ coupling		
	2.2. The $T_g \otimes \varepsilon_g$ vibronic interaction in O_h		
	2.3. The $T_g \otimes \tau_{2g}$ interaction		
	2.4. The $T_{g} \otimes (\varepsilon_{g} + \tau_{2g})$ Jahn–Teller interaction		
	2.5. $E_g \otimes \varepsilon_g$ coupling in O _h		
3.	The Jahn–Teller effect in Ti ^{III} X ₆ ^{3–} polyhedra		
	3.1. Introductory remarks		
	3.2. Energy and structural results, from DFT and experiment		
	3.3. The presence of bridging ligands		
4.	The strain model		
	4.1. The elastic and the binding strain		
	4.2. Solids A ⁱ Ti ⁱⁱⁱ F ₄		
5.	Vibronic coupling in V ^{III} X ₆ ³⁻ polyhedra		
	5.1. Ground state analysis		
	5.2. Excited state analysis		
	5.3. The ground state properties due to configurational mixing		
	5.4. The presence of bridging besides terminal ligands		
	5.5. The strain influence in solids A ¹ VF ₄		
6.	Cr ^{III} X ₆ ³⁻ polyhedra		
	6.1. The ligand field parameters		
	6.2. Vibronic coupling in excited states		
	6.3. The presence of bridging ligands in trans- and cis-positions		
7.	Mn ^{III} X ₆ ³⁻ polyhedra		
	7.1. Fluoride as the ligand		
	7.2. The strain in solids $A^{I}MnF_{4}$		
	7.3. The chloride ligand		
8.	The ligand-to-metal charge transfer in MCl ₆ ³⁻ polyhedra (M ^{III} : Ti–Co)		
9.	Co ^{III} X ₆ ³⁻ polyhedra		
	9.1. The stable high-spin state		
	9.2. The strain in solids A ^I CoF ₄		
	9.3. High-spin versus low-spin		
10.	The NiF $_6^{3-}$ polyhedron		
	10.1. High-spin or low-spin ground state?		
	10.2. The high-spin/low-spin equilibrium		
11.	The Cu ^{III} F6 ³⁻ polyhedron		
12.	DFT calculations and further details		
	12.1. Vibronic coupling calculations		

* Corresponding author. *E-mail address:* reinen@chemie.uni-marburg.de (D. Reinen).

^{0010-8545/\$ –} see front matter 0 2010 Published by Elsevier B.V. doi:10.1016/j.ccr.2010.04.015

	12.2.	DFT and interelectronic correlations	2747
	12.3.	Computational comments	2747
	12.4.	d–d spectroscopy and experimental	2748
13.	Final	discussion and summary	2748
	13.1.	The vibronic JT coupling	2748
	13.2.	The influence of strain and cooperavity	2749
	13.3.	Recent theoretical and computational approaches	2750
	Acknow	wledgements	2750
	Appen	dix A	2750
	A.1.	The $T \otimes (\varepsilon + \tau_2)$ coupling matrix	2750
	A.2.	V ^{IV} OX ₅ ³⁻ impurity centres	2751
	A.3.	Vibronic coupling in the $Cr(X_t)_6^{3-}(X = Cl^-, F^-)$ octahedra, as derived by DFT	2752
	A.4.	Analysis of the ${}^{2}E_{\alpha}(d^{7})$ ground state splitting in D_{4h}	2752
	Appen	dix B. Supplementary data	2753
	Refere	nces	2753

ARTICLE INFO

Article history: Received 22 December 2009 Accepted 20 April 2010 Available online 29 June 2010

Keywords:

Jahn–Teller coupling T and E ground states Density-functional calculations Strain effects 3dⁿ–M^{III} cations Halide ligands Ligand field theory

ABSTRACT

In contrast to well established experimental results of vibronic coupling effects in octahedral dⁿ complexes with Eg ground states (Cu²⁺, Ag²⁺; Cr²⁺, Mn³⁺ etc.), not much useful material is available for the Jahn-Teller (JT) effect in orbital triplet ground states. The present study is concerned with this deficiency, providing data for octahedral halide model complexes with 3dⁿ cations – in particular for Ti^{III}, V^{III} and high-spin Co^{III}, Ni^{III} with T_{2g} and T_{1g} ground states, which involve, to first-order, solely splitting of the π -antibonding t_{2g} MOs. Besides experimental results – structural and spectroscopic, mainly from d–d spectra – data from computations are needed for a quantitative treatment of the $T_g \otimes (\varepsilon_g + \tau_{2g})$ vibronic interaction as well as in the $E_g \otimes \varepsilon_g$ coupling case (Mn^{III}, low-spin Ni^{III}); DFT was the method of choice, if only critically selected outcomes are utilised. The theoretical bases of the treatment are the dⁿ ligand field matrices in O_h, extended by the inclusion of lower-symmetry distortion parameters, and the conventional theory of vibronic coupling. Caution is needed when classifying the effects of interelectronic repulsion; DFT does not reproduce the magnitudes of the Racah parameters B, C, as deduced from the d-d spectra, properly – the presumed reasons are analysed. DFT even allows one to deduce reliable vibronic coupling constants via the analysis of orbitally degenerate excited states (Cr^{III}, ⁴A_{2g} ground state). The group-theoretical analysis of the interaction with the JT-active ε_g and τ_{2g} modes yields D_{4h}, D_{3d} and D_{2h} as the possible distortion symmetries in the case of a T_g ground state. The DFT-calculations give clear evidence, that the D_{4h} stationary points represent the absolute minima in the $T_g \otimes (\varepsilon_g + \tau_{2g})$ potential surface - in agreement with experiment, where available. For the first time, vibronic coupling constants, characterising JT splitting of ground and excited T_g states, can be presented for trivalent 3dⁿ cations in octahedral halide ligand fields. They turn out to be smaller by a factor of almost 3 in comparison to those, which determine the coupling in σ -antibonding e_{σ} MOs.

The tetragonal splitting of T_g states is typically only small, around 0.1 eV, and suggests that strain influences from a specific ligand arrangement and/or the presence of different ligands may modify the potential surface considerably. We have studied such effects via compounds $A^I M^{III} F_4$, where an *elastic* strain induced by the host structure, and a *binding* strain, due to the simultaneous existence of (largely) terminal and of bridging ligands, are active. A novel strain model, in its interplay with JT coupling, is proposed and applied – using energies from the d–d spectra, structural results and data from DFT.

Chloride complexes are only known for Ti^{III} to Fe^{III}; the rather small electronegativity already of Co^{III} suggests a reducing ligand-to-metal (3dⁿ) electron transfer for $n \ge 6$. Similarly, the low-lying ligand-to-metal charge transfer bands in the d–d spectra of the Cu^{III}F₆^{3–} complex and the reduced T_g $\otimes \varepsilon_g$ coupling strength suggest a pronounced covalency of the Cu^{III}–F, and, even more distinctly, of the Cu^{III}–O bond, which is of interest for superconductivity. The Ni^{III}F₆^{3–} polyhedron possesses a low-spin configuration in the elpasolite structure. The spectroscopic evidence and the DFT data indicate, that the minimum positions of the alternative $a^2A_{1g}(a^2E_g)$ and $a^4A_{2g}(a^4T_{1g})$ potential curves are only ≤ 0.02 eV apart, giving rise to interesting high-spin/low-spin phenomena. It is the strong $E_g \otimes \varepsilon_g$ as compared to the T_{1g} $\otimes \varepsilon_g$ coupling, which finally stabilises a spin-doublet ground state in D_{4h}.

We think, that the selected class of solids is unique particularly for the study of Jahn–Teller coupling in T ground states, with model character for other systems. In our overview a procedure is sketched, which uses reliable computational results (here from DFT) for supplementing incomplete experimental data, and presents – on a semiquantitative scale – convincing statements, consistent with chemical intuition. It is also a pleading for ligand field theory, which rationalises d-d spectra in terms of chemical bonding; though the latter spectra provide frequently only rather coarse information, their assistance in the energy analysis is crucial.

Download English Version:

https://daneshyari.com/en/article/1300612

Download Persian Version:

https://daneshyari.com/article/1300612

Daneshyari.com