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ARTICLE INFO ABSTRACT
Article history: Forster resonance energy transfer (FRET) configurations incorporating colloidal semiconductor quantum
Received 19 April 2013 dots (QDs) have proven to be a valuable tool for bioanalysis and bioimaging. Mirroring well estab-
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lished techniques with only fluorescent dyes, “traditional” FRET configurations with QDs have involved
single-step energy transfer to organic dye acceptors mediated by biomolecular interactions. Here, we
review recent progress in characterizing non-traditional FRET configurations incorporating QDs and their
application to challenges in biosensing, energy conversion, and fabrication of optoelectronic devices.
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Such non-traditional FRET configurations with QDs include substitution of organic dyes with lanthanide
complexes, polypyridyl transition metal complexes, azamacrocyclic metal complexes, graphene (oxide),
carbon nanotubes, gold nanoparticles, and dyes exhibiting photochromism. Other non-traditional con-
figurations of interest include FRET relays (with or without organic dyes) that feature multiple sequential
energy transfer steps, and thin films of QDs where discrete FRET pairs cannot be defined, including those

where QDs are layered in a size-sequential or “rainbow” structure. The calculation of FRET efficiencies and
donor-acceptor distances in the above configurations are reviewed, as are distance scaling relationships
for non-zero dimensional acceptors, and the related dipolar energy transfer mechanism, nanosurface
energy transfer (NSET). To illustrate the utility of non-traditional QD-FRET configurations, we highlight
examples of optically switchable probes, photonic wires, time-gated and multiplexed probes for biosens-
ing, enhanced light harvesting in QD and dye sensitized solar cells (DSSC), and colour conversion in
light emitting diodes (LEDs). We close by providing a perspective on how the combined utility of these
non-traditional QD-FRET configurations may be useful for engineering complex nanoscale devices in the

future.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Colloidal semiconductor nanocrystals, better known as quan-
tum dots (QDs), are prospective materials for a wide variety
of applications. QDs are characterized by a unique set of
optical properties that primarily arise from quantum confine-
ment effects [1-4]. Foremost among these properties is their
bright photoluminescence (PL), the colour of which can be
tuned on the basis of nanocrystal size and composition. Other
favourable optical properties include broad absorption spectra
with large one-photon (¢=104-10’ M~!cm~1) and two-photon
(o2pE=103-10*GM) absorption cross-sections, large effective
Stokes shifts (up to hundreds of nanometers), spectrally nar-
row and symmetric PL emission (full-width-at-half-maximum,
FWHM =25-35nm), and good resistance to photobleaching [1].
These properties have made QDs very attractive probes for
bioimaging and bioanalysis, where they are often touted for their
multiplexing capability and suitability for single particle visualiza-
tion and tracking [1,5-10]. Equally important in such applications
is the interface of the QD, which represents a nanoscale scaffold for
chemistry and functionalization. The physical properties of the QD
can be tailored through application of ligand or polymer coatings
[11], and biological activity can be obtained through bioconjuga-
tion [12]. The latter can include binding or other reactions with
biomarkers, targeting of cells and tissues, and delivery of ther-
apeutics. In abiotic roles, QDs also represent building blocks for
optically active thin films, superlattice structures [13], and various
composite materials [14] for optoelectronic applications such as
light emitting diodes (LEDs) and displays, lasers, photodetectors,
and solar cells [15].

QDs become even more powerful tools when their above-
mentioned attributes are combined with electron transfer or
Forster resonance energy transfer (FRET) processes that can, for
example, modulate QD PL to generate active signaling or sensitize
a secondary process. FRET is perhaps best known as a spectroscopic
tool for biophysical studies, including vesicle fusion and membrane
dynamics [16], protein folding [17], DNA detection [18], enzyme
assays [19], ligand-receptor and protein-protein interactions [20],
both in the ensemble and at the single molecule level [21-23]. In
typical FRET experiments, a biomolecule is co-labeled with a donor
fluorophore and an acceptor chromophore, or, alternatively, two
interacting biomolecules are individually labeled with donor and
acceptor. In the former case, conformational changes affect the flu-
orescence from the donor (and acceptor) due to the nanometric
distance-dependence of FRET; in the latter case, changes in fluores-
cence are due to association or dissociation. To a large extent, these
highly successful biological applications of FRET have inspired sim-
ilar developments that incorporate QDs and their unique optical
properties as participants in FRET, typically as donors. There is now

a myriad of studies where QDs are used in either of the two gen-
eral FRET configurations noted above, and several comprehensive
reviews have been written on the utility of these configurations in
bioimaging and bioanalysis [24-26].

This review examines some of the recent work in the litera-
ture involving non-traditional FRET configurations based on QDs.
We use the term “traditional” to refer to energy transfer in a single
step between a QD and an organic dye molecule, usually as a dis-
crete pairing of a QD donor with one or more equivalent organic
dye acceptors in bulk solution. Here, we discuss QD-FRET configu-
rations that depart from this norm in one or more important ways.
Deviations may include the substitution of conventional organic
dyes with other chromophores; for example, lanthanide and other
metal complexes, gold nanoparticles, carbon allotropes, or even
organic dyes with unusual properties such as photochromism. Spe-
cial attention is paid to the characterization of energy transfer in
these systems, including other mechanisms that may supersede or
compete with FRET. Moreover, by our definition, a departure from
traditional QD-FRET configurations is not limited to the choice of
acceptor. Non-traditional configurations may also include architec-
tures where multiple energy transfer pathways are incorporated;
for example, as in the case of multistep sequential energy transfer,
otherwise known as a FRET “relay” or “cascade.” Configurations of
this nature have been realized with QD-bioconjugates in solution
and with thin films of QDs at an interface. The latter are also non-
traditional FRET configurations in that discrete donor-acceptor
pairs cannot be defined. While the success of traditional QD-FRET
methods has been impressive, even greater capability and innova-
tions are expected from non-traditional QD-FRET configurations.
As will be discussed, new capabilities in bioanalysis and therapeu-
tics, enhancements in solar energy conversion, and fabrication of
improved optoelectronic devices have already been demonstrated.

2. Quantum dots and FRET

Prior to discussing non-traditional QD-FRET configurations, it
is worthwhile to review the fundamentals of FRET theory, includ-
ing its “traditional” application with QDs. FRET is a resonant
dipole-dipole coupling interaction that occurs through-space to
transfer excitation energy from a donor fluorophore to an acceptor
chromophore. The energy transfer is radiationless, occurring with-
out the involvement of photons. Theodor Forster, after whom the
process is named, first elucidated the mechanism between 1946
and 1948 [27-30]. The genius of Forster was that he was able to
describe this process in terms of spectroscopic donor and accep-
tor properties that could be measured through relatively simple
experiments.

The rate of energy transfer in FRET is given by Eq. (1), where
r51 = kg = kr + knr is the inverse native lifetime of the donor
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