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ABSTRACT
ARTICLE INFO

The review discusses the results of ab initio time-dependent density functional theory and non-adiabatic
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multiple exciton generation, fission, and recombination. These nonequilibrium phenomena control the
optical and electronic properties of QDs. Our approach can account for QD size and shape, as well as
chemical details of QD structure, such as dopants, defects, core/shell regions, surface ligands, and unsatu-
rated bonds. Each of these variations significantly alters the properties of photoexcited QDs. The insights
reported in this review provide a comprehensive understanding of the excited-state dynamics in QDs and
suggest new ways of controlling the photo-induced processes. The design principles that follow, guide

development of photovoltaic cells, electronic and spintronic devices, biological labels, and other systems
rooted in the unique physical and chemical properties of nanoscale materials.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Quantum dots (QDs) are nanoscale clusters of bulk material
whose electronic excitations are confined in all three spatial dimen-
sions. Every material has its own exciton Bohr radius, which is the
physical size of an excitation in the bulk of that particular mate-
rial. When the dimensions of a nanocrystal reach this characteristic
length, it starts to exhibit the effects of quantum confinement much
like a particle in a box. This allows for the properties of the QD to be
tuned continuously by changing the cluster’s size and shape. Once
the system reaches the subnanometer scale, it begins to behave like
amolecule; its structure varies from bulk and its properties change
discontinuously with cluster size.

The unique physical and chemical properties [1-4]| of semi-
conducting and metallic nanocrystals form the basis for a variety
of applications, ranging from optical sensors [5,6] and probes
[7,8], to photovoltaic [9,10], optical [11], electronic [12], opto-
electronic [13], and spintronic [14] devices, and to light-emitting
[15] and imaging [16] technologies. The excited state dynamics
in semiconducting [17] and metallic [18] QDs are very intri-
cate [19]. For instance, high absorption cross sections, decreased
electron-phonon relaxation rates [20,21], and generation of
multiple electron-hole pairs [22-24] make QDs outstanding pho-
tovoltaic materials since all these features provide opportunities
to utilize photon energy in excess of the band-gap [20,25].
Electron-hole and charge-phonon interactions have both funda-
mental and practical importance, since both interactions contribute
to the overall efficiency of a photovoltaic device. Phonon-induced
dephasing of spin and electron states influences charge and energy
transfer processes. Inelastic scattering is responsible for energy loss
during charge tunneling though QDs.

Relaxation and pure-dephasing are two related but distinct
phenomena that result from electron-phonon interactions. Relax-
ation is an inelastic process that leads toward energy losses.
Electron-phonon pure-dephasing is an elastic process, and there-
fore conserves electronic energy. Pure-dephasing determines the
homogenous linewidths in optical spectra. It transforms a coherent
superposition of states into uncorrelated state ensembles. When
considering MEG, electron-phonon relaxation competes with and
inhibits it. At the same time, destruction of superpositions of
SEs and MEs occur due to elastic electron-phonon scattering.
Phonon-induced pure-dephasing of coherent superpositions of sin-
gle and ME states destroys the quantum mechanical entanglement
between the states and is an essential component of excited state
dynamics in QDs.

Nanocrystals are sufficiently large objects that can support mul-
tiple excitations. Therefore, Auger-type processes, which create
and annihilate charges and excitons, play a particularly important
role. For instance, multiple exciton generation (MEG), also known
as carrier multiplication (CM), is the process in which a single high-
energy photon is absorbed and creates two or more electron-hole
pairs [23,26-28], This phenomenon provides potential for increas-
ing photovoltaic device efficiencies [24]. MEG happens in bulk,
but is typically more efficient in QDs [24,29]. This is because
in bulk materials crystal momentum, a pseudo-momentum

associated with electrons in a lattice, needs to be conserved. This
requirement enforces strict selection rules and causes the energy
needed to form a biexciton to be more than simply two times the
band-gap. A lack of translational symmetry in QDs voids the need
to conserve crystal momentum [30]. In addition, Coulomb inter-
action between electrons and holes is enhanced due to the closer
proximity of charge carriers inside a nanocrystal [31].

The current review presents a cutting edge ab initio descrip-
tion of the time-dependent dynamics of photoexcited states in
semiconductor and metallic QDs. The ab initio methods are used
to study excited state composition, evolution and relaxation. The
time-dependent atomistic nature of the methods provides power-
ful tools for studying the role of surface ligands, dopants, defects,
unsaturated bonds, size, shape and other realistic aspects of QDs.
The described simulations provide a comprehensive perspective on
the elastic and inelastic scattering dynamics of photoexcited charge
carriers in nanoscale materials, directly mimicking numerous time-
resolved experiments, and offering insights into the fundamental
mechanisms underlying QD applications in optics, photovoltaics,
electronics and related fields.

2. Theoretical approaches

We use a wide array of ab initio methods to study the photoex-
cited dynamics of QDs. The simulations described in this review
treat many-body interactions in the electronic degrees of freedom
for either fixed nuclear coordinates, or nuclei evolving classi-
cally or semiclassically. We refer readers interested in a detailed
description of the methods and their numerical implementation
to Prezhdo et al. [32] and Akimov et al. [33]. Symmetry adapted
cluster (SAC) theory with configuration interactions (CI) is used to
study the nature of photoexcited states and to describe photoin-
duced MEG for fixed nuclei. Exciton dynamics, including impact
ionization (II) and electron-phonon relaxation, are modeled using
time-dependent density functional theory (TDDFT). Here, exci-
tons are coupled to phonon motions with nonadiabatic molecular
dynamics (NAMD) methods. The optical response formalism is used
to obtain information on electron-phonon dephasing, which has an
influence in the exciton formation as well as relaxation.

2.1. Hartree—Fock method provides a mean-field picture

Even the smallest QDs consist of hundreds of atoms leading
to systems with tens of thousands of electrons. For example, a
PbggSegg QD with diameter of only 2 nm already has 8000 electrons.
Solving for the exact many-body wavefunction for this system
would be impossible. Fortunately, physically motivated approxi-
mations have been shown to bring tractability to the many-body
problem. One of the simplest and earliest methods developed is
the Hartree-Fock (HF) approach. The HF theory was introduced
to solve the electronic Schrodinger equation for a given set of
nuclear coordinates. The basic assumption behind the HF method
is that the many-electron wavefunction can be written as a prop-
erly symmetrized product of one-electron orbitals. An individual
electron in the system feels an electrostatic field from the central
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