Contents lists available at ScienceDirect

Inorganic Chemistry Communications

journal homepage: www.elsevier.com/locate/inoche

Short communication

Intramolecular self-alkylation reaction of an iron(II) dichloroclathrochelate caused cyclization–demethylation in its chelate ribbed fragment

Genrikh E. Zelinskii ^a, Alexander S. Belov ^a, Anna V. Vologzhanina ^a, Valentin V. Novikov ^a, Oleg A. Varzatskii ^b, Yan Z. Voloshin ^{a,c,*}

^a Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 119991 Moscow, Russia

^b Vernadskii Institute of General and Inorganic Chemistry NASU, 03680, Kiev, Ukraine

^c Gubkin Russian State University of Oil and Gas, 119991 Moscow, Russia

ARTICLE INFO

Article history: Received 21 January 2016 Received in revised form 4 March 2016 Accepted 16 March 2016 Available online 18 March 2016

Keywords: Macrocyclic compounds Clathrochelates Iron complexes Ligand reactivity Intramolecular cyclization Dealkylation reaction

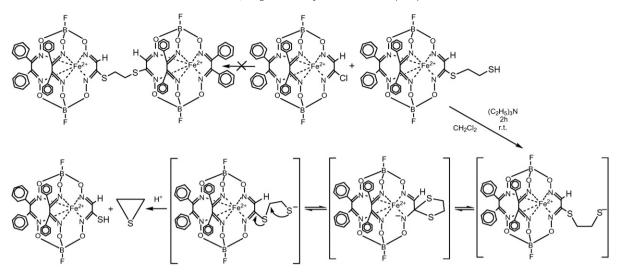
ABSTRACT

Nucleophilic substitution of an iron(II) dichloroclathrochelate precursor FeBd₂(Cl₂Gm)(BF)₂ (where Bd²⁻ and Gm are α -benzildioxime dianion and glyoxime residue, respectively) with 3-dimethylaminopropylamine unexpectedly afforded the macrobicyclic product of an intramolecular cyclization followed by a demethylation reaction with elimination of CH₃Cl. The molecular structure of this clathrochelate was unambiguously confirmed both in solution and in solid state using multinuclear NMR spectroscopy and by single crystal X-ray diffraction, respectively.

© 2016 Elsevier B.V. All rights reserved.

Clathrochelate molecules with pendant substituents containing reactive terminal HO-, H₂N- and HS-groups [1-5], and those with donor (in particular, pyridyl [6-9]) apical groups have been widely used for modification of various materials (in particular, via their covalent immobilization on a surface of the working electrodes), and for the synthesis of polyclathrochelate metallomacrocycles and coordination cages as well. This allowed to elaborate new types of molecular switches [2]. electrocatalysts for hydrogen evolution reaction [3], the mediators of electron transfer and clathrochelate-modified gold electrodes for amperometric determination of hydrogen peroxide [4]. An unexpected result has been observed in an attempt [1] to obtain an iron(II) bis-clathrochelate by Scheme 1 using nucleophilic substitution of a monochloroclathrochelate precursor FeBd₂(HGmCl)(BF)₂ with generated in situ anionic derivative of a thiol-terminated cage compound FeBd₂(H(HSCH₂CH₂S)Gm)(BF)₂ as S-nucleophile. In this case, an iron(II) macrobicyclic complex with inherent HS-group in one of its three α -dioximate ribbed fragments has been isolated as a major product of such a reaction. The detailed study suggested that a clathrochelate FeBd₂(H(HSCH₂CH₂S)Gm)(BF)₂ underwent the intramolecular elimination of ethylene sulfide (thiirane) under basic conditions to yield a

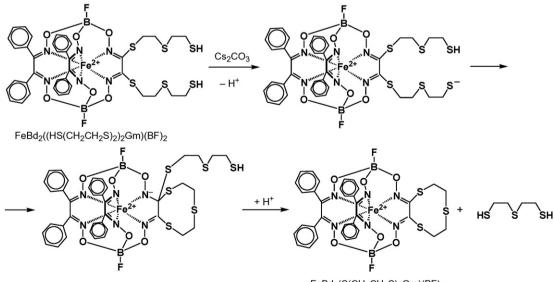
E-mail address: voloshin@ineos.ac.ru (Y.Z. Voloshin).


macrobicyclic product $FeBd_2(HGmSH)(BF)_2$; plausible mechanism of this self-dealkylation process, "the dragon biting its own tail", is also shown in Scheme 1.

When we attempted [5] to synthesize a S_6 -thiacrown ether cage complex using a stepwise procedure, by condensation of a dithiolterminated clathrochelate FeBd₂((HS(CH₂CH₂S)₂)₂Gm)(BF)₂ with 1,2diiodoethane in the presence of Cs₂CO₃ in DMF, this reaction unexpectedly gave S_3 -thiacrown ether complex FeBd₂(S_3 -CwGm)(BF)₂ as a major macrobicyclic product. It was shown that the deprotonated thiolate group of an initial cage complex attacks the adjacent thiolterminated alkylsulfide substituent in a vic-position of the same ribbed α -dioximate fragment, thus giving the nine-membered S₃-cyclic fragment as a result of the dealkylation reaction by Scheme 2. Moreover, in a series of alkylsulfide clathrochelates, an unusual demethylation of a bis-methylsulfide iron(II) clathrochelate FeBd₂((CH₃S)₂Gm)(BF)₂ has been observed as a result of its reaction with $PtCl_4^2$ dianion by Scheme 3, giving the polynuclear platinum(II) bis-cage complexes of the corresponding dithiolate macrobicyclic ligand. Their multicentered molecules are stabilized by formation of the highly stable fivemembered PtS₂C₂ chelate cycles [5].

Recently we reported [10] that the electrophilic iron(II) hexachloroclathrochelates with reactive ribbed chlorine substituents are able to alkylate HS-containing compounds (in particular, glutathione, GSH) within a cell. As a result, they showed a high cytotoxicity against

^{*} Corresponding author at: Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 119991 Moscow, Russia.



Scheme 1. Self-dealkylation reaction of the thiol-terminated alkylsulfide ribbed substituent at macrobicyclic framework and its plausible pathway [1].

human promyelocytic leukemia cells. Such toxicity has been explained by the ability of these cage metal compounds to increase the intracellular oxidative stress. Based on *in vitro* studies, two processes have been suggested [10] to be responsible for this effect: (1) an alkylation of GSH, and (2) a direct generation of reactive oxygen species by partially alkylated electrophilic clathrochelates. Such a high selective activity suggests that these macrobicyclic complexes are prospective compounds for a search of potent anticancer prodrugs and, therefore, the design and synthesis of such electrophilic macrobicyclic complexes is undoubtedly important task.

Trying to obtain the monoribbed-functionalized iron(II) cage complexes with biogenic terminal amino groups, targeting the DNA structure, as a potent transcription inhibitors (topological drugs [11]), we found that nucleophilic substitution of a dichloroclathrochelate precursor FeBd₂(Cl₂Gm)(BF)₂ with 3-dimethylaminopropylamine by Scheme 4 [12] unexpectedly gave the mixture of clathrochelate products, mainly a macrobicyclic complex FeBd₂((CH₃N(CH₂)₃NH)Gm)(BF)₂. The latter clathrochelate resulted from an intramolecular cyclization followed by a demethylation reaction *via* elimination of CH₃Cl as most probable second product of this reaction and its molecular structure was unambiguously confirmed both in solution and in solid state using multinuclear NMR spectroscopy [12] and by single crystal X-ray diffraction [13], respectively. At the same time, we failed to obtain the macrobicyclic complex with two terminal *tert*-amino groups under various reaction conditions: in all cases the main product was a cyclic derivative FeBd₂((CH₃N(CH₂)₃NH)Gm)(BF)₂. Our attempts to use other solvents and to increase the concentration of this *N*-nucleophile gave either an inseparable mixture of the clathrochelate products or resulted in the complete destruction of a cage framework.

The number and position of the signals in solution ¹H and ¹³C{¹H} NMR spectra of a diamagnetic monoribbed-functionalized iron(II) clathrochelate FeBd₂((CH₃N(CH₂)₃NH)Gm)(BF)₂ as well as the ratios of the integral intensities of protons of the chelate α -benzildioximate fragments and those of the functionalizing ribbed substituent in its ¹H NMR spectrum confirmed the composition and symmetry of a macrobicyclic molecule FeBd₂((CH₃N(CH₂)₃NH)Gm)(BF)₂, thus allowing to deduce its structure. In particular, this molecule does not have a symmetry plane passing through the middles of its chelate C—C bonds and an encapsulated iron(II) ion as well, and it contains

FeBd₂(S(CH₂CH₂S)₂Gm)(BF)₂

Scheme 2. Dealkylation reaction in a vic-position of the same ribbed chelate fragment of a clathrochelate molecule and its plausible pathway [5].

Download English Version:

https://daneshyari.com/en/article/1303213

Download Persian Version:

https://daneshyari.com/article/1303213

Daneshyari.com