

Contents lists available at SciVerse ScienceDirect

Inorganic Chemistry Communications

journal homepage: www.elsevier.com/locate/inoche

Influence of meridional N₃-ligands on supramolecular assembling and redox behavior of carboxylatocopper(II) complexes

József S. Pap^a, Vanda Bányai^a, Dávid S. Szilvási^a, József Kaizer^{a,*}, Gábor Speier^a, Michel Giorgi^b

^a Department of Chemistry, University of Pannonia, 8200 Veszprém, Hungary

^b Aix-Marseille Université, FR1739, Spectropole, Campus St. Jérôme, Avenue Escadrille Normandie-Niemen, 13397 Marseille cedex 20, France

ARTICLE INFO

Article history: Received 23 June 2011 Accepted 13 August 2011 Available online 27 August 2011

Keywords: Copper(II) Isoindoline Carboxylate Redox chemistry Supramolecular assembly

ABSTRACT

Mononuclear phenylglyoxylato- and 4-R-benzoatocopper(II) complexes with two different 1,3-bis(2-arylimino) isoindoline ligands (aryl = pyridyl, or benzimidazolyl) have been synthesized and characterized. Coordination mode of the carboxylate ligands is very similar (monodentate) in each case, while redox behavior of the copper center is dependent on the aryl- and 4-R-substituents. The supramolecular assembly in the solid state via hydrogen bonds and π -stacking between the ligands can be influenced by the aryl-group and carboxylate ligand. © 2011 Elsevier B.V. All rights reserved.

Mixed-ligand copper complexes with carboxylate ligands are of perpetual interest due to their interesting structural properties [1,2], therapeutic potential [3] or biomimetic activities [3–5]. O-Benzoylsalicylato- and salicylatocopper(II) complexes with the rigid, meridional N₃-ligand 1,3-bis(2-pyridylimino)isoindoline (HL¹, Scheme 1) [6] have been structurally characterized as products from the oxygenation of the corresponding flavonolato- and methylchromonatocopper(II) complexes [6,7]. These compounds served as functional models for the copper-containing 2,4-flavonol dioxygenase enzyme [8]. Acetatocopper(II) complexes with other tridentate isoindoline derivatives were also studied as selective peroxylation catalysts for olefins [9]. An interesting, common feature of the structurally characterized complexes is that the carboxylate is coordinated to the copper exclusively as a monodentate ligand in spite that the isoindoline-based ligands allow other bidentate ligands such as flavonol and methylchromone to occupy one quasi-equatorial and one apical position in a square-pyramidal geometry, or another isoindoline [10] to form hexacoordinate, bis-chelate copper(II) complexes. The aim of the present work was to apply the two different isoindolines, 1,3-bis(2-pyridylimino)isoindoline (HL¹) [11] and 1,3-bis(2-benzimidazolylimino) isoindoline (HL²) [11], and the carboxylate ligands shown in Scheme 1 in order to possibly alter the carboxylate coordination mode by electronic and steric effects. As it will be shown the binding mode does not change significantly for a wide spectrum of ligand combinations, instead systematic change in the supramolecular assembling of the mononuclear complexes is experienced along with changes in the Cu^{2+}/Cu^+ redox potential and reversibility.

The complexes were synthesized according to the procedure in Scheme 2 [12]. Crystallization of the solid products from DMF provided single crystals of 1, 2.2DMF and 4.DMF that were suitable for X-ray crystallography [13–15]. Structure of 1 is shown in Fig. 1a. The Cu(II) center adopts distorted SPY-5 geometry, the basal square plane is constituted of three nitrogens of L^1 (N1, N3 and N5) and one carboxylate oxygen (O1) of pga. The copper atom is out of the N1.N3.N5 plane by 0.128 Å. The steric hindrance of the two pyridyl arms on L¹ pushes the O1 atom out from the fourth equatorial position leading to distortion of the geometry toward TBPY-5 (the τ value is 0.21 [16]). The apical position is occupied by a water molecule. The distance of the pga O2 atom from the Cu(II) center (2.993 Å) excludes bonding interaction thus the carboxylate is coordinated to the metal as a monodentate ligand. The $\Delta = 184$ cm⁻¹ energy difference between the v_{as} and v_{s} vibration modes of the carboxylate group that were observed in the FTIR spectrum of 1 (Fig. S1, FTIR data: ref. [12]) also indicates monodentate coordination mode in agreement with the X-ray structural information.

The presence of water ligand, carboxylate and carbonyl oxygen atoms and exocyclic imine nitrogens on L^1 may lead to H-bonding interactions. These interactions are observed in the crystal structure of **1** and indicated with dashed lines in Fig. 1b. For clarity, the pattern of the intermolecular H-bonds is depicted for one of the two individual molecules in the unit cell. Each mononuclear complex is bound to three adjacent ones by four intermolecular

^{*} Corresponding author. Tel.: + 36 88 624 720; fax: + 36 88 624 469. *E-mail address:* kaizer@almos.vein.hu (J. Kaizer).

^{1387-7003/\$ –} see front matter 0 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.inoche.2011.08.005

Scheme 1. Structure of the applied ligands.

H-bonds of two types: $O2'^{...}H2w - O4$ and $N4'^{...}H1w - O4$. Based on the distances and angles (caption of Fig. 1) these two interactions are close in energy and belong to the medium-strength category [17]. The interactions assist in building of a double-chain network of **1** that is further supported by "intra-chain" π -stacking between the A and C, or C' (Scheme 1) heterocyclic moieties of L^1 . The geometrical parameters describing the π -stacking are listed in Table 1 (X is the distance between the centroids of the stacked aromatic rings, d is the perpendicular distance between their mean planes, δ is the offset between the centers measured along one of the planes, α is the angle between the line connecting centroids (X) and the normal to the plane of the aromatic system (d), and β is the dihedral angle between the planes in a stack, according to Scheme S1). Somewhat similar interactions were reported for the [Cu(4'-MeL¹ $(H_2O)_2$]⁺ complex (4'-MeL¹ = 1,3-bis{2-(4-methylpyridyl)imino}isoindolinate) with TPBY-5 geometry [18]. In the case of 1 a further, sheetlike arrangement of the "double-chains" is observed as shown in Fig. 1c. The chains are anchored by π - π interactions between the benzene rings of the pga ligands (for parameters see Table 1) that lead to a highly organized supramolecular assembly.

In comparison, in single crystals of **2** from DMF the complex adopts a significantly distorted *SP*-4 geometry with an N_3O donor set (Fig. 2a) where the Cu atom is out of the N1,N3,N5 plane by

Cu ^{ll} (ClO ₄) ₂ ·6H ₂ O		
1. HL ⁿ in CH 2. 1eq. Et ₃ N 3. exc. carbo 4. 1eq. Et ₃ N	₃ CN oxylic acid	
[Cu ^{ll} (L ⁿ)(OH ₂) _x (pga)]	n = 1; x = 1:	1
	n = 2; x = 0:	2
[Cu ^{ll} (L ⁿ)(OH ₂) _x (4R-ba)]	n = 1; R = H; x = 1:	3
	n = 2; R = H; x = 0:	4
	$n = 2; R = N(CH_3)_2; x = 0;$	5
	n = 2; R = OCH ₃ ; x = 0:	6
	n = 2; R = CH ₃ ; x = 0:	7
	n = 2; R = Cl; x = 0:	8
	n = 2; R = CN; x = 0;	9
	n = 2; R = NO ₂ ; x = 0:	10

Scheme 2. Synthesis and numbering of the mixed-ligand complexes.

0.293 Å. The O2 atom of the pga ligand is found at 2.616 Å from the Cu(II) center that does not support significant bonding interaction. The $\Delta = v_{as}(CO_2) - v_s(CO_2)$ value from FTIR data (Fig. S2) is smaller (171 cm⁻¹) than in the case of **1** in accordance with the smaller observed Cu – O2 distance.

The presence of NH functions on L^2 of **2** and the absence of water ligand lead to changes in the intermolecular interactions in comparison with 1. The N4 and N7 atoms form almost linear H-bonds with two O-atoms (O4 and O5) of DMF molecules (Fig. 2a). Between two **2** 2DMF assemblies offset π -stacking forces make contact due to interactions of A and C or C' rings of the two L^2 moieties (Table 1). These pairs of two independent molecules along with the H-bonded DMF molecules are positioned across a center of pseudosymmetry at the center of the unit cell or at the half of axis a (Fig. 2b). Such interactions were shown to imprint chiral information on supramolecular dimers of Pd complexes with β -pinene containing isoindolines [19]. Furthermore, there are short intermolecular contacts between methyl H-atoms (H34A) of DMF molecules and a neighboring carboxylic O2 atom of a dimeric assembly that render a chain of dimers together (Fig. 2c), where the L² ligands in antiparallel conformation are strongly slipped ($\delta = 2.54$ Å) therefore only weak (if any) stacking can be presumed (Table 1).

Complex **4** crystallizes from DMF with one solvent per complex molecule that is H-bonded to the N7 atom of the L² ligand via H7 (Fig. 3a). The Cu(II) center is four-coordinate, surrounded by a N₃O donor set. The geometry is distorted square-planar where the O1 points out of the plane due to strong steric hindrance of the L² ligand (H-atoms on C21 and C15). To show that the distortion of the SPY-4 geometry is dominantly governed by the steric hindrance of the two in-plane H-atoms a brief structural analysis was done with carboxylate complexes that contain L¹ [6], 4'-Me-L¹ [9], L², or 1,3-bis (2-thiazolylimino)isoindolinate (L^3) [9]. Ligands L^1 , L^2 and L^3 have in-plane H.H distances that span a range between 3.33 and 4.85 Å (Table S1). A negative relationship was found between the distance of the quasi-equatorial carboxylate O atom from the line of the two in-plane H-atoms and the H-H distance (Fig. S3), e.g. the least distorted SPY-4 geometries were found with L^3 , where the $H \cdots H$ distance is the longest. The Cu atom in 4 is above the N1,N3,N5 plane by 0.361 Å. The Cu1 – O2 distance (2.614 Å) is indicative of monodentate coordination of the benzoate ligand. Note that the $\Delta =$ $v_{\rm as}(\rm CO_2) - v_s(\rm CO_2)$ value from FTIR (Fig. S2) is 162 cm⁻¹, unusually small for a monodentate carboxylate ligand. However, the 4.DMF assemblies form H-bonded dimers in which the N4-H4A-02' interactions are relatively strong, based on their distance and linearity (Fig. 3a, caption). This interaction can be accounted for the small difference in $\nu(CO_2)$. The L² moieties are arranged antiparallel in the Download English Version:

https://daneshyari.com/en/article/1304167

Download Persian Version:

https://daneshyari.com/article/1304167

Daneshyari.com