Contents lists available at ScienceDirect

Inorganic Chemistry Communications

journal homepage: www.elsevier.com/locate/inoche

Short communication

Synthesis and characterization of [NBu₄][La(CH₃OH)₂(DCU)NO₃{Mo₅O₁₃(OMe)₄(NO)}]·CH₃OH: A novel Lanthanide-substituted Lindqvist-type oxo-nitrosyl polymolybdate

Yunshen Zhang ^{a,b,1}, Hongli Jia ^{b,1}, Jiangwei Zhang ^b, Shijia Zhu ^{b,c}, Kun Chen ^{b,*}, Yongge Wei ^{b,*}

^a Department of Petrochemical Engineering, Puyang Vocational and Technical College, Henan 457000, PR China

^b Department of Chemistry, Tsinghua University, Beijing 100084, PR China

^c Department of Chemistry, Imperial College London, England SW7 2AZ, UK

ARTICLE INFO

Article history: Received 28 March 2016 Received in revised form 8 June 2016 Accepted 11 June 2016 Available online 13 June 2016

Keywords: Polyoxometalates Lanthanide-substituted One-pot Coordination chemistry Photoluminescence

ABSTRACT

A 1:1 complex of Lanthanide-substituted Lindqvist-type oxo-nitrosyl polymolybdate $[NBu_4][La(CH_3OH)_2(DCU)NO_3\{Mo_5O_{13}(OMe)_4(NO)\}] \cdot CH_3OH$ (1) has been successfully synthesized by a one-pot self-assembly process of hydroxylamine hydrochloride with octamolybdate, DCC and $La(NO_3)_3$ in methanol under mild reaction conditions. The structure is determined by X-ray crystallography. It is notable that the compound is a Lindqvist-type POM with a capped lanthanum ion which is nine coordinated in a distorted square antiprism geometry. Interestingly, NO_3^- as the precursor, as well as the hydrated product DCU of DCC, are both coordinated with Lanthanum ion. The structure has also been characterized by IR, UV-vis and photoluminescence analysis. Photoluminescence analysis reveals that compound 1 emits weak green light in CH₃CN, with the maximum emission at 530 nm.

© 2016 Elsevier B.V. All rights reserved.

Polyoxometalates (POMs) are clusters of early transition metals in their highest oxidation states (typically group 5 or 6 metal) with variable structural features and extensive surface chemistry properties which make them suitable as models for probing the properties of nonmolecular oxides, especially in the field of catalysis [1], as well as applied in molecular magnetism [2], electronics [3], material [4], and medicinal science [5]. Peculiarly, the functionalization of POM clusters not only enriches the structures but also brings about fine-tuned properties, which has been fully studied in recently years.

The Lindqvist-type POM $[M_6O_{19}]^{n-}$ (M = Mo, W (n = 2); Ta, Nb (n = 8); V (n = 8)) [6] is one of the typical prototypes among POM structures. The chemical modification of the POM clusters surface mostly focuses on two areas: (1) Organically functionalized POMs with covalently grafted organic ligands [7], a sizable class of derivatives $[Mo_6O_{18}(L)]^{n-}$, has been prepared based on the process in which one or more terminal oxo ligands within the parent structure is substituted by a nitrogen or an oxygen containing ligand, such as nitrosyl [8–13], phenyldiazenido [14–15], alchoholate [16] and organoimido [17–24], which makes the POMs, the physical and chemical properties more tunable. Among $[Mo_6O_{18}(L)]^{n-}$ species, organoimido hexamolybdates

* Corresponding authors.

yonggewei@mail.tsinghua.edu.cn (Y. Wei).

¹ These authors contributed equally to this work.

 $[Mo_6O_{18}(NR)]^{2-}$ are well proceeded by Peng and Wei [18-24] with the so-called DCC protocol, which is faster, more efficient and the yields are higher. (2) Incorporation of various metal centers leads to the discovery of a range of heterometallic Lindqvist clusters $[M'(L)M_5O_{18}]^{n-}$ (M = Mo, W; M' = transition metal,*e.g.*Co, V, Zr, Hf; L = ligand,*e.g.* $<math>RO^-$, O^{2-} , *etc.*) [25]. Among these structures, a derivatized defect Lindqvist-type $[Mo_5O_{13}(OMe)_4(NO)]^{3-}$, has been fully characterized by Anna Proust. In POM chemistry, monovacant anions can act as bidentate [11], tetradentate [8,10,13], or bisbidendate [11,12] ligands and have been considered as inorganic anologues of metalloporphyrins, and are convenient building blocks to accommodate transition metals or rare-earth metals, exhibiting a variable coordination chemistry [9– 13], and boosting new species with different chemical stoichiometries, structural features and interesting properties.

In contrast, coordination chemistry derived from $[Mo_5O_{13}(OMe)_4(NO)]^{3-}$ is still less common, and only a minority of these kinds of hybrids have been successfully reported by Anna Proust, which are mainly two types: (i) 1:1 complexes of the type $[X\{Mo_5O_{13}(OMe)_4(NO)\}]^{n-}$ (X = Na⁺ [8], Ni²⁺ [9], Ag⁺ [12], and Mn²⁺ [13]). Among them, for Ni²⁺, a central rhomb-like {Ni₂Mo₂} cluster is linked to two terminal $[Mo_5O_{13}(OMe)_4(NO)]^{3-}$ units. As for Ag⁺, each defect polyoxoanion bridging two Ag⁺ is in slightly distorted square-planar environment and significant Ag…Ag bonding interaction exits in $[Ag_2\{Mo_5O_{13}(OMe)_4(NO)\}_2]^{4-}$. (ii) 2:1 complexes of $[X\{Mo_5O_{13}(OMe)_4(NO)\}_2]^{n-}$ (X = Ca²⁺, Sr²⁺, Ba²⁺, Ce³⁺, Eu³⁺ and

E-mail addresses: ck1982@mail.tsinghua.edu.cn (K. Chen),

 ${\rm Bi}^{3+}$ [10]). The environment is square prismatic for alkaline earth metal cations while it is square antiprismatic for rare earth metal cations and ${\rm Bi}^{3+}$. Moreover, these compounds were obtained step-by-step by using $[{\rm NaMo}_5{\rm O}_{13}({\rm OMe})_4({\rm NO})]^{2-}$ as precursor, since the sodium cation is easily displaced by metal cations to concrete diverse structures (see Scheme 1).

In view of the potential diversity of coordination chemistry for $[Mo_5O_{13}(OMe)_4(NO)]^{3-}$, one of the current investigations in our group is focusing on the structural characterization of novel 1:1 Lanthanide-substituted Lindqvist-type oxo-nitrosyl polymolybdate mainly based on following ideas: (i) $[Mo_5O_{13}(OMe)_4(NO)]^{3-}$ is a convenient building block to coordinate with transition metals and rare-earth metals, thus it could well enrich the coordination chemistry. (ii) Ln³⁺ cations have the strong oxophilicity and could meet multiple coordination requirements [26], which is favorable to combine with lacunary POM precursors to create novel POM derivatives and may have potential applications in areas ranging from photochemistry, molecular magnetism, catalysis to gas adsorption [27], as well as lanthanide and actinide cations in connection with radioactive waste treatment [28]. What's more, Yagasaki's group [29] fabricated the 2:1 anion cluster $[Ln(Mo_8O_{26})_2]^{5-}$ and 1:2 $[{Ln(NO_3)_3}_2(Mo_8O_{26})]^{4-}$ (Ln = Y, La, Ce, Pr, Nd, Gd, Yb) with the highly oxophilic Ln³⁺ cations as well as the main building block $[\beta-Mo_8O_{26}]^{4-}$ unit. (iii) 1:1 type of the species with Ln³⁺ cations are seldom focused on but could not be neglected. Lanthanide-substituted POMs can also serve as building blocks in further functionalization or fabrication to obtain more complicated and fascinating structures via post-modification or self-assembly procedures. Following the above consideration, we concentrated on the research of Lanthanide-substituted POMs and successfully obtained a novel 1:1 Lanthanide-substituted Lindqvist-type oxo-nitrosyl polymolybdate, $[NBu_4][La(CH_3OH)_2(DCU)NO_3[MO_5O_{13}(OMe)_4(NO)]] \cdot CH_3OH (1) by$ serendipity one-pot procedure through the DCC protocol developed in the organoimido chemistry of POMs. The result presented here maybe provides a protocol for the facile synthesis of Lanthanide-substituted Lindqvist-type oxo-nitrosyl polymolybdate.

Using DCC as the dehydrating agent, a one-pot refluxing reaction of $(Bu_4N)_4[Mo_8O_{26}]$, La $(NO_3)_3$ and hydroxylamine chloride at

suitable ratios in hot CH₃OH solvent can afford the title compound 1 (see Scheme 1) in good yield of 60%. Single crystal X-ray diffraction analysis reveals that compound **1** is composed of one discrete *n*- Bu_4N^+ cation, one $[La(CH_3OH)_2(DCU)NO_3\{MO_5O_{13}(OMe)_4(NO)\}]^$ anion cluster and one CH₃OH solvent molecule, which crystallizes in triclinic system, P space group. Summaries of crystal data, data collection and refinement parameters of compound 1 are given in Table 1. As shown in Fig. 1, the molecular structure of the anion cluster of compound **1** is a monovacant nitrosyl-substituted Lindqvist-type POM capped with a lanthanum cation, obtained by formal removal of a $Mo = O_t$ group. Due to the loss of a $Mo = O_t$ group and the replacement of another $Mo = O_t$ group by a $Mo(NO)^{3+}$ unit containing the nitrosyl group, the anion cluster is highly negatively-charged and is quadruply-methylated to balance the increased negative charges. Clearly, the site of methylation is located in the four Mo atoms adjacent to the Mo(NO)³⁺ group. The central oxygen atom O1 has significantly shifted toward Mo1, the reduced Mo(II) center of the $Mo(NO)^{3+}$ group. In this respect, it is worthwhile to point out that the observed axial Mo1-O1 bond length (2.117 Å) is significantly shorter than the average bond length value for the equatorial Mo_{eq} — O_1 (Mo_{eq} = Mo2, Mo3, Mo4, Mo5) bonds (2.336 Å), while the $Mo_1 - O_b$ ($O_b = 015, 016, 017, 018$) bond length (1.998 Å) is shorter than the average bond length value for Mo_{eq} — O_b (2.240 Å) either. In particular, the average Mo-O distances involving the coordinated axial oxygen atoms O_a (1.744 Å, Mo2–O10, Mo3–O11, Mo4– 012, Mo5–013), are comparable with those equatorial oxygen atoms Oe (1.699 Å, Mo2-O7, Mo3-O8, Mo4-O9, Mo5-O6), indicating that the Lindqvist-type POM is greatly distorted. The La³⁺ ion occupies the vacant site and is nine coordinated in a distorted square antiprism geometry by four oxygen atoms from the Mo₅ cluster, two oxygen atoms from CH_3OH , two oxygen atoms from NO_3^- , and one oxygen atom from DCU, the N, N'-dicyclohexylurea, a hydrated product of DCC. This is quite different with the coordination geometry in $[La(Mo_8O_{26})_2]^{5-}$ and 1:2 $[{La(NO_3)_3}_2(Mo_8O_{26})]^{4-}$, which the La atom in the former is sandwiched between two octamolybdate units and achieves 8-fold square-antiprismatic coordination, while in the latter structure the La atom achieves 10-fold coordination

Scheme 1. The synthesis of compound 1 and the comparison between one-pot and step-by-step method.

Download English Version:

https://daneshyari.com/en/article/1305236

Download Persian Version:

https://daneshyari.com/article/1305236

Daneshyari.com