# Zinc and aluminum complexes derived from 2, 4- $N$, $N^{\prime}$-disubstituted 1, 3 , 5-triazapentadienyl ligands: Synthesis, characterization and catalysis of the ring-opening polymerization of rac-lactide 

Dan Tian, Qianwen Xie, Lei Yan, Hongbo Tong, Meisu Zhou*<br>Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, People's Republic of China

## A R T I C L E I N F O

## Article history:

Received 16 February 2015
Received in revised form 30 March 2015
Accepted 14 May 2015
Available online 28 May 2015

## Keywords:

Triazapentadienyl
Zn and Al complexes
Crystal structures
Catalytic property


#### Abstract

$\overline{\operatorname{Bis}(1,3,5 \text {-triazapentadienate }) \text { zinc complexes }\left[\mathrm{N}(\mathrm{Ph}) \mathrm{C}(\mathrm{R}) \mathrm{NC}(\mathrm{R}) \mathrm{N}\left(\mathrm{SiMe}_{3}\right)\right]_{2} \mathrm{Zn}\left(\mathrm{R}=\mathrm{NMe}_{2}, \mathbf{1} ; 1 \text {-piperidino, 2) and }\right.}$ (1,3,5-triazapentadienate)aluminum dichloride $\left[\mathrm{N}(\mathrm{Ph}) \mathrm{C}\left(\mathrm{NMe}_{2}\right) \mathrm{NC}\left(\mathrm{NMe}_{2}\right) \mathrm{N}\left(\mathrm{SiMe}_{3}\right)\right] \mathrm{AlCl}_{2} \cdot \mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{6}$ (3) were synthesized and structurally characterized by X-ray crystallography and spectroscopic techniques. The X-ray structures of 1-3 showed that they crystallize in the triclinic system and prefer coordination to the zinc and aluminum centers via the terminal N atoms of the NCNCN ligand backbone, affording tetrahedral geometry. The catalytic properties of $\mathbf{1}$ and $\mathbf{2}$ were evaluated.


© 2015 Elsevier B.V. All rights reserved.

Noncyclic (hetero) pentadienyls have played important roles in the development of organometallic chemistry and extensively investigated in searching for the alternatives to cyclopentadienyls. Conjugated 5 -membered $\pi$ systems especially the nitrogen-containing ligands such as 1,5 -diazapentadienyls [ $\beta$-diketiminates] [1] and its nitrogen analogs $1,3,5$-triazapentadienyls [2,3] not only provide a unique steric and electronic environment for stabilizing a vast array of main-group and transition metals, but allow facile tuning through substitution at the N atoms of the ligand backbone. The related 1,2,5-triazapentadienyls [4] and 1,2,4,5-tetraaza (known as "formazans") ligands have also been studied [5]. Their zinc and aluminum compounds and some other main group metal complexes have been used as catalysts in the polymerization reactions [6-11]. In our previous publication, we described the synthesis and coordination chemistry of a series of 1,3,5-triazapentadienyl transition metal complexes [12,13] and main group metal such as magnesium complexes [14]. In continuing this research we report herein the synthesis and characterization of bis(1,3,5-triazapentadienate)zinc and (1,3,5-triazapentadienate)aluminum complexes and discuss their structures.

The starting ligand $\mathrm{PhN}\left(\mathrm{SiMe}_{3}\right)$ Li was synthesized according to the literature procedures [12]. The formation of the 1,3,5-triazapentadienyl ligands involves insertion reactions of $\mathrm{PhN}\left(\mathrm{SiMe}_{3}\right) \mathrm{Li}$ into the $-\mathrm{C} \equiv \mathrm{N}$ functionality, followed by 1,3 -silyl migrations. Treatment of $\mathrm{PhN}\left(\mathrm{SiMe}_{3}\right) \mathrm{Li}$ with two molar equivalents of dimethylcyanamide or

[^0]1-piperidinecarbonitrile and then 0.5 equivalents of zinc chloride yields $\mathbf{1}$ and 2, respectively [15,16]. Treatment of $\mathrm{PhN}\left(\mathrm{SiMe}_{3}\right) \mathrm{Li}$ with five equivalents of dimethylcyanamide, followed by addition of equal equivalent of aluminum chloride gave $\mathbf{3}$ as colorless crystals in reasonable yield [17] (Scheme 1) with the formation of triazine. Both compounds $\mathbf{1}$ and $\mathbf{2}$ are very soluble in diethyl ether and dichloromethane, and less soluble in aliphatic hydrocarbon solvents and are conveniently crystallized as colorless crystals from $\mathrm{Et}_{2} \mathrm{O}$. Multinuclear NMR and elemental data indicated the formation of the complexes, and this indication was confirmed by X-ray diffraction studies on single crystals of 1-3 (Fig. 1-3) [18-20]. IR spectra exhibit strong absorptions at $1529 \mathrm{~cm}^{-1}$ for $\mathbf{1}$ and $1517 \mathrm{~cm}^{-1}$ for $\mathbf{2}$ which are assigned to $\mathrm{C}=\mathrm{N}$ stretching due to coordination of nitrogen atoms. The strong bands around $1440 \mathrm{~cm}^{-1}$ can be assigned to the $\mathrm{C}-\mathrm{N}$ single bond stretching. The strong bands in the range of $1294-$ $1529 \mathrm{~cm}^{-1}$ can be assigned to the skeleton vibration of the $1,3,5-$ triazapentadienyl ligands.

The molecular structure of $\mathbf{1}$ (Fig. 1) crystallizes in the triclinic $p \overline{1}$ space group. The structure contains a four-coordinate zinc atom with tetrahedral geometry consisting of four nitrogen atoms of two 1,3,5triazapentadienyl anions with $\mathrm{Zn} 1-\mathrm{N}$ bond distances of 2.021 (2) [Zn1-N1], 2.005 (2) [Zn1-N5], 2.030 (2) [Zn1-N6] and 1.991 (2) Å [Zn1-N10], respectively. They are comparable to the mean values of Zn-N [1.9769 (18)-2.0234 (16) Å] in tetrahedral bis(formazanate)zinc compound [5] and 1,2,4-triphenyl-1,3,5-triazapentadiene zinc complex [ $\mathrm{Zn} \mathrm{n}-\mathrm{N} 1,2.0615$ (12); Zn-N5, 1.9818 (12) Å] [8], but longer than those in three-coordinate $\beta$-diketiminate zinc hydride complex [ $\mathrm{Zn}-\mathrm{N} 1,1.950$ (1); Zn-N2, 1.952 (1) Å] [21].


Scheme 1. Synthetic routes to complexes 1-3.

The bond angles $\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{N} 5$ and $\mathrm{N} 6-\mathrm{Zn} 1-\mathrm{N} 10$ are 97.02 (7) and $97.03(7)^{\circ}$, respectively, comparable to that in the three-coordinate $\beta$ diketiminate zinc hydride complex [N1-Zn-N2, 97.33 (4) ${ }^{\circ}$ ] [21], but larger than those in four-coordination $\beta$-diketiminate zinc complex with NNCNN backbone [N-Zn-N, 87.98 (4)-93.18 (7) ${ }^{\circ}$ ] [5] and 1,3,5triazapentadiene zinc dichloride complex [N1-Zn1-N5, 90.48 (5) ${ }^{\circ}$ [8].

The dihedral angle between planes N1Zn1N5 and N6Zn1N10 is $90.5^{\circ}$. Within the 1,3,5-triazapentadieno ligands, the $\mathrm{N}-\mathrm{C}$ bond distances are in the range of 1.315 (3)-1.361 (3) Å. Bond angles N1-C7-N3, C7-N3-C10 and N3-C10-N5 are 123.69 (18), 127.56 (17) and $126.20(18)^{\circ}$,


Fig. 1. Molecular structure of 1. Thermal ellipsoids are plotted at $50 \%$ probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths ( $\AA$ ) and angles (deg): $\mathrm{Zn}(1)-$ $\mathrm{N}(1) 2.021$ (2), $\mathrm{Zn}(1)-\mathrm{N}(5) 2.005$ (2), $\mathrm{Zn}(1)-\mathrm{N}(6) 2.030$ (2), $\mathrm{Zn}(1)-\mathrm{N}(10) 1.991$ (2), $\mathrm{N}(1)-\mathrm{C}(7) 1.360$ (3), $\mathrm{N}(2)-\mathrm{C}(7) 1.366$ (3), $\mathrm{N}(3)-\mathrm{C}(7) 1.339$ (3), $\mathrm{N}(3)-\mathrm{C}(10) 1.349$ (3), $\mathrm{N}(4)-\mathrm{C}(10) 1.383$ (3), N(5)-C(10) 1.342 (3), N(6)-C(22) 1.330 (3), $\mathrm{N}(7)-\mathrm{C}(22) 1.371$ (3), $\mathrm{N}(8)-\mathrm{C}(22) 1.361$ (3), $\mathrm{N}(8)-\mathrm{C}(25) 1.315$ (3), $\mathrm{N}(9)-\mathrm{C}(25) 1.434$ (3), $\mathrm{N}(10)-\mathrm{C}(25)$ 1.346 (3); N(1)-Zn(1)-N(5) 97.02 (7), N(6)-Zn(1)-N(10) 97.03 (7), C(7)-N(3)-C(10) 127.56 (17), C(22)-N(8)-C(25) 127.67 (18), Zn(1)-N(1)-C(7) 117.27 (13), Zn(1)-$\mathrm{N}(5)-\mathrm{C}(10) 112.70$ (13), $\mathrm{Zn}(1)-\mathrm{N}(6)-\mathrm{C}(22) 116.39$ (13), Zn(1)-N(10)-C(25) 115.38 (13).
respectively. Each bidentate 1,3,5-triazapentadieno ligand forms a sixmembered metallocycle ZnNCNCN, where the N1C7N3C10N5 fivemembered ring is not planar. The dihedral angle between the N1C7N3 and the N3C10N5 is $40.1^{\circ}$.

The crystalline 2 (Fig. 2) has a similar structure to complex 1 except for the replacement of $\mathrm{NMe}_{2}$ by 1-piperidino. In complex $\mathbf{2}$, there are two chemically similar, crystallographically independent molecules in the crystal lattice and the bond distances and angles have no significant differences. The metal center is in a distorted tetrahedral environment consisting of the four nitrogen atoms of two bidentate 1,3,5-triazapentadieno anions with 93.1 and $92.4^{\circ}$ of dihedral angles between planes N1Zn1N5 and N6Zn1N10, N11Zn2N15 and N16Zn2N20, respectively. The $\mathrm{Zn} 1-\mathrm{N}$ bond distances are in the range of 1.972 (2)-2.002 (2) $\AA$, comparable to those of $\mathrm{Zn} 2-\mathrm{N}$ [1.974 (2)-2.006 (2) $\AA$ ]. In the ligand moiety $N C N C N$, the $C-N$ bond distances are in the range of 1.305 (3)-1.373 (4) $\AA$, indicating $\pi-$ electron delocalization in the NCNCN fragment. In 2, the bond angles N-Zn1-N [N1-Zn1-N5, 96.95 (9); N6-Zn1-N10, 96.43 (9) ${ }^{\circ}$ ] are comparable to those of $\mathrm{N}-\mathrm{Zn} 2-\mathrm{N}[\mathrm{N} 11-\mathrm{Zn} 2-\mathrm{N} 15,96.02$ (9); N16-Zn2-N20, $97.31(9)^{\circ}$ ] and those of 1.

The molecular structure of $\mathbf{3}$ is illustrated in Fig. 3, which contains two different independent molecules in the asymmetric unit, one is the 1,3,5-triazapentadienate aluminum complex and the other is a triazine molecule. The bond distances and angles in the triazine molecule are normal. The metal center is bound to two nitrogen atoms from the 1,3,5-triazapentadienyl ligand and two chlorine atoms, giving rise to a slightly distorted tetrahedral coordination environment. The dihedral angle between Cl 1 Al 1 Cl 2 and N 1 Al 1 N 5 is $87.8^{\circ}$. The bond distances of $\mathrm{Al} 1-\mathrm{Cl} 1$ and $\mathrm{Al} 1-\mathrm{Cl} 2$ are 2.129 (1) and 2.142 (1) $\AA$, respectively, and those of $\mathrm{Al} 1-\mathrm{N} 1$ and $\mathrm{Al} 1-\mathrm{N} 5$ are 1.858 (2) and 1.855 (2) $\AA$, respectively, similar to the $\mathrm{Al}-\mathrm{N}$ distances $[1.850$ (2) $\AA$ ] in $\beta$-diketiminato aluminum compound (TTP) $\mathrm{AlCl}_{2}$ (TTPH $=2$-( $p$-tolylamino)-4-( $p$-tolylimino)-2pentene) [22], but shorter than those in dimethyl aluminum diketiminate complex $R, R$-nacnac ${ }^{\mathrm{CH}(\mathrm{Me}) \mathrm{Ph}} \mathrm{AlMe}_{2}$ [Al1-N1, 1.9223 (15); Al1-N2, 1.9165 (15) Å] [7]. Bond distances N1-C7, C7-N3, N3-C10 and C10-N5 are 1.371 (3), 1.318 (3), 1.336 (3) and 1.374 (3) $\AA$, respectively, indicating an obvious long-short-short-long pattern of $\mathrm{C}-\mathrm{N}$ bond lengths in the NCNCN backbone. This is consistent with localized $\mathrm{C}=\mathrm{N}$ and $\mathrm{C}-\mathrm{N}$ bonding in previously reported monomeric U-shaped lithium 1,3,5-triazapentadienyl adducts of fluorinated ligands $\left[\left\{\mathrm{N}\left\{\left(\mathrm{C}_{3} \mathrm{~F}_{7}\right) \mathrm{C}(\mathrm{Dipp}) \mathrm{N}\right\}_{2}\right\} \mathrm{Li}(\mathrm{THF})\right]$ and $\left[\left\{\mathrm{N}\left\{\left(\mathrm{C}_{3} \mathrm{~F}_{7}\right) \mathrm{C}(\mathrm{Mes}) \mathrm{N}\right\}_{2}\right\} \mathrm{Li}(\mathrm{THF})_{2}\right]$ [23]. Bond angle $\mathrm{Cl} 1-\mathrm{Al} 1-\mathrm{Cl} 2$ is $106.45(4)^{\circ}$, narrower than that in (TTP) $\mathrm{AlCl}_{2}$ ( $\left.\mathrm{Cl} 1-\mathrm{Al1}-\mathrm{Cl} 1 \mathrm{~A}: 109.95(6)^{\circ}\right)$. Bond angle N1-Al1-N5 [100.06 (8) ${ }^{\circ}$ ] is comparable to that in (TTP) $\mathrm{AlCl}_{2}$ [N1-Al1-N1A: 99.41

# https://daneshyari.com/en/article/1305337 

Download Persian Version:
https://daneshyari.com/article/1305337

## Daneshyari.com


[^0]:    * Corresponding author.

    E-mail address: mszhou@sxu.edu.cn (M. Zhou).

