Inorganica Chimica Acta 410 (2014) 20-28

Contents lists available at ScienceDirect

Inorganica Chimica Acta

journal homepage: www.elsevier.com/locate/ica

Organotin(IV) compounds containing N,C,O-chelating ligand

Miroslav Novák, Libor Dostál, Aleš Růžička, Roman Jambor*

Department of General and Inorganic Chemistry, University of Pardubice, Studentská 64, CZ-532 10 Pardubice, Czech Republic

ARTICLE INFO

Article history: Received 13 August 2013 Received in revised form 9 October 2013 Accepted 10 October 2013 Available online 18 October 2013

Keywords: Organotin Chelating ligands NMR Crystal structure

1. Introduction

The field of hyper-coordinated organotin(IV) compounds is currently extensively investigated [1a-k]. The hyper-coordination of tin(IV) atom can be achieved by using of organic groups containing additional donor atom Y, that provide an intramolecular $Y \rightarrow Sn$ donor-acceptor bond [2]. Exploration in the field of such ligands resulted to the preparation of terdentate monoanionic, so-called "pincer", ligands with general formula $[2,6-(YCH_2)_2C_6H_3]^-$. First organotin(IV) compound, prepared in late 1970th, contained N,C,N-chelating ligand $\{C_6H_3(CH_2NMe_2)_2-2,6\}^-$ [3]. Afterwards, organotin(IV) compounds containing an aryldiphosphonic ester $\{C_6H_2[P(O)(OR)_2]_2-1,3-t-Bu-5\}^-$ as O,C,O-chelating ligand were mentioned in the late 1990s [4]. Different O,C,O-chelating ligand $\{C_6H_3(CH_2OR)_2-2,6\}^-$ has been applied for preparation of hypercoordinated organotin(IV) [5] compounds in 2002 and other types of Y,C,Y-pincer ligands were also applied in the chemistry of tin compounds [6]. Moreover, it was demonstrated, that different Y donor atoms influence the structure, stability and reactivity of prepared organotin compounds [7]. Besides other results in the field of organotin(IV) or organotin(II) compounds, it was demonstrated that N,C,N- or O,C,O-type chelating ligands are even useful for the stabilization of organotin(I) distannynes (Fig. 1) [8].

Above mentioned examples, however, dealt with symmetrical Y,C,Y-chelating ligands, while organotin(IV) compounds bearing unsymmetrical Y,C,Y'-chelating ligand are not practically known. The only example was reported by Jurkschat, who synthesized organotin(IV) compounds containing O,C,S-chelating ligand [9].

* Corresponding author. Fax: +420 466037068.

E-mail address: roman.jambor@upce.cz (R. Jambor).

ABSTRACT

A set of organotin(IV) compounds containing unsymmetrical N,C,O-chelating ligands { $C_{6}H_{3}(CH_{2}OMe)-2-(CH_{2}NMe_{2})-6$ }⁻ (hereafter denoted as L¹) and { $C_{6}H_{3}(CH_{2}OtBu)-2-(CH_{2}NMe_{2})-6$ }⁻ (hereafter denoted as L²) was prepared. While triorganotin(IV) chlorides L¹⁻²Ph₂SnCl (**1** for L¹, **2** for L²) are stable, diorganotin(IV) chloride L¹PhSnCl₂ (**3**) and monoorganotin(IV) bromide L¹SnBr₃ (**5**) reacts with water under elimination of HX (X = Cl, Br). The reaction of another molecule **3** or **5** with HX (X = Cl, Br) provided "stannatrane type" compounds [{ $C_{6}H_{3}(CH_{2}OMe)-2-(CH_{2}N^{+}HMe_{2})-6$ }(Ph)SnCl₃] (**4**) and [{ $C_{6}H_{3}(CH_{2}OMe)-2-(CH_{2}N^{+}HMe_{2})-6$ }SnBr₄] (**6**), respectively. Compounds **1–6** were characterized by multinuclear NMR spectroscopy and molecular structures of **1**, **3**, **4** and **6** were determined by X-ray diffraction analysis.

© 2013 Elsevier B.V. All rights reserved.

This prompt us to prepare an unsymmetrical N,C,O-chelating ligands $\{C_6H_3(CH_2OMe)-2-(CH_2NMe_2)-6\}^-$ (hereafter denoted as L¹) and $\{C_6H_3(CH_2OtBu)-2-(CH_2NMe_2)-6\}^-$ (hereafter denoted as L²) [10]. As a part of the comprehensive studies on the intramolecularly coordinated organotin(IV) compounds [11], we report here synthesis of triorganotin(IV) chlorides L¹Ph_2SnCl (1) and, L²Ph_2SnCl (2); diorganotin(IV) chlorides L¹Ph_SNCl₂ (3) and monoorganotin(IV) bromide L¹SnBr₃ (5). Compounds 3 and 5 react with H₂O under elimination of HX (X = Cl, Br). The following reaction of another molecule 3 or 5 with HX (X = Cl, Br) provided "stannatrane type" compounds [$\{C_6H_3(CH_2OMe)-2-(CH_2N^+HMe_2)-6\}(Ph)SnCl_3$] (4) and [$\{C_6H_3(CH_2OMe)-2-(CH_2N^+HMe_2)-6\}(Ph)SnCl_3$] (5), respectively. Compounds 1–6 were characterized by the multinuclear NMR spectroscopy and molecular structure of 2–4 and 6 were determined by X-ray diffraction analysis.

2. Result and discussion

2.1. Synthesis and characterization of triorganotin(IV) compounds $L^{1-2}Ph_2SnCl$

Treatment of $L^{1-2}Li$ with Ph_2SnCl_2 provided triorganotin(IV) compounds L^1Ph_2SnCl (1) and L^2Ph_2SnCl (2) (Scheme 1). Compounds 1 and 2 are white solids soluble in polar solvents and stable on air.

Compounds **1** and **2** were studied in CDCl₃ solution by the help of ¹H, ¹³C and ¹¹⁹Sn NMR spectroscopy. The ¹H NMR spectrum revealed signals at δ 1.91 for NMe₂ group and at 3.29 ppm for OMe group, respectively, in **1** (δ 1.30 for NMe₂ and 1.83 ppm for OtBu in **2**). The ¹H NMR spectrum also exhibited signals at δ 3.50 for methylene *CH*₂N group and at 4.94 ppm for methylene *CH*₂O

^{0020-1693/\$ -} see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.ica.2013.10.009

Fig. 1. Organotin(I) species stabilized by an N,C,N- and O,C,O-chelating ligands.

Scheme 1. Synthesis of triorganotin(IV) compounds 1 and 2.

protons in **1** (δ 3.47 for CH₂N and 5.13 ppm for CH₂O in **2**). The signal of methylene CH₂O protons is shifted downfield ($\Delta \delta = 0.48$) compared with those found in ligand precursor $L^{1}H$ ($\Delta\delta$ = 0.70 ppm in **2** in comparison with $L^{2}H$). The downfield shifts of $CH_{2}O$ groups indicate the presence of $O \rightarrow Sn$ coordination in **1** and **2**. The ¹¹⁹Sn NMR spectrum shows resonance at δ –203.0 ppm in **1** $(-201.3 \text{ ppm in } \mathbf{2})$ that is shifted upfield ($\Delta \delta$ 158.3 ppm for $\mathbf{1}$, and 156.6 ppm for **2**) compared with Ph_3SnCl (-44.7 ppm) [12]. Values of δ^{119} Sn) hint the presence of five-coordinated tin atom in 1 and 2 [12,13] and are comparable with those found in triorganotin(IV) compounds bearing C,N-chelating ligands [13]. The existence of $O \rightarrow Sn$ interaction and the presence of five coordinated tin atom in **1** and **2** is also reflected in ¹³C NMR spectra of **1** and **2**. The values of the ${}^{1}J({}^{119}\text{Sn},{}^{13}\text{C}(1))$ and ${}^{1}J({}^{119}\text{Sn},{}^{13}\text{C}(1)_{Ph})$ coupling constants (730 and 735 Hz for 1, 695 and 705 Hz for 2) are higher than those found in Ph₃SnCl (614.3 Hz) [12,14]. The coordination arrangement at the tin atom is described as trigonal bipyramid in 1 and 2 based on the vales of the calculated bonding angles C(1)-Sn- $C(1)_{Ph}$ and $C(1)_{Ph}$ -Sn- $C(1)_{Ph}$ (119°, 119° (1); 116°, 119° (2)) [15]. The presence of $O \rightarrow Sn$ coordination in 1 and 2 is, however, in direct contrast with the strong $N \rightarrow Sn$ coordination found in the solid state of **1** (*vide infra*) and this suggests the dynamic coordination of both donor atoms of the ligand L¹ in the solution of **1** and **2** (see Scheme 1).

The molecular structure of **1** was determined by X-ray diffraction analysis and is depicted in Fig. 2, crystallographic data are given in Table 1.

The tin atom is five coordinated with deformed *trans*-trigonal bipyramidal geometry in **1**. The equatorial plane is formed by C1, C12 and C18 carbon atoms of ligand L¹ and phenyl groups, while nitrogen atom N1 of ligand L¹ and chlorine atom Cl1 are located in the axial positions. The N1–Sn1 bond distance (2.451(2) Å) indicates strong N→Sn intramolecular coordination $(\sum_{cov}(Sn,N) = 2.11 \text{ Å}, \sum_{vdW}(Sn,N) = 3.89 \text{ Å})$ [16], while the O1–Sn1 bond distance (3.293(2) Å) proves absence of O1→Sn1 interaction in **1** $(\sum_{vdW}(Sn,O) = 3.86 \text{ Å})$ [16]. This hints that the L¹ ligand more resemble related C,N-chelating ligands in the solid state of **1** [13,17].

Fig. 2. ORTEP View of 1. The thermal ellipsoids are drawn with 50% probability. Hydrogen atoms are omitted for clarity. Selected bond distances (Å) and angles (°): Sn1-N1 2.451(2), Sn1-O1 3.293(2), Sn1-C1 2.149(3), Sn1-C12 2.147(3), Sn1-C18 2.132(3), Sn1-C11 2.5123(8), N1-Sn1-C11 176.93(7), C18-Sn1-C12 120.63(12), C18-Sn1-C1 124.63(12), C12-Sn1-C1 110.98(12).

Download English Version:

https://daneshyari.com/en/article/1305700

Download Persian Version:

https://daneshyari.com/article/1305700

Daneshyari.com