EI SEVIER Contents lists available at ScienceDirect ### **Inorganic Chemistry Communications** journal homepage: www.elsevier.com/locate/inoche # Synthesis, characterization of sodium and potassium complexes and the application in ring-opening polymerization of L-lactide Longhai Chen ^a, Lei Jia ^a, Feixiang Cheng ^a, Lei Wang ^a, Chu-chieh Lin ^b, Jincai Wu ^{*,a}, Ning Tang ^{*,a} - ^a Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China - ^b Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan, ROC #### ARTICLE INFO Article history: Received 21 August 2010 Accepted 20 September 2010 Available online 29 September 2010 Keywords: Sodium Potassium Catalyst Lactide Ring-opening polymerization #### ABSTRACT A novel sterically bulky phenol (2,4-di-tert-butyl-6-(1-(3,5-di-tert-butyl-2-(2-(2-methoxyethoxy) phenyl)ethyl)phenol)(HL) and corresponding dimeric sodium and potassium complexes [ML] $_2$ (1: M = Na, 2: M = K) have been prepared and structurally characterized. Experimental results showed that complexes 1 and 2 can efficiently initiate the ring-opening polymerization of lactide in a controlled fashion, yielding polymers with expected molecular weight and low polydispersity indexes. © 2010 Elsevier B.V. All rights reserved. Polylactide (PLA) is one of the most important biodegradable materials for its wide applications in biomedical and pharmaceutical fields [1], and over the past three decades much attention has been devoted to the development of new catalytic/initiating systems for the preparation of polylactide (PLA). Among several catalytic systems reported previously, the ring-opening polymerization (ROP) of lactide is the most effective method for the synthesis of PLA [2]. Many metal complexes have been used to initiate/catalyze ring-opening polymerization of lactides due to the advantages of well controlled molecular weight and low polydispersity index (PDI) [3]. As a result, a variety of metal complexes coordinated with sterically bulky ligands such as β -diketiminate, salen, diol, etc., have been developed and used as catalytic/initiating systems for the ROP of lactides [4]. Although these complexes are excellent catalysts for the ROP of lactides with high yields, their utilization to some extent is limited by difficulties in removal of the catalyst from the resultant polymers as well as the toxicity of metal cation [5]. To address this issue, many attempts have been made to discover the nontoxic metal complexes (e.g., sodium [6], potassium [7], magnesium [8], calcium [9], iron [10]) and highly active metal-free [11] catalysts for the ROP of lactides. Due to the fact that sodium and potassium cations are nontoxic, essential for life and also readily available, sodium and potassium cations are preferentially selected as one component of metal complex catalyst during our investigation on the development of novel effective catalysts for ROP of lactides. EDBPH2 is an interesting ligand because it has been approved as an indirect food additive (as an antioxidant in polymer packaging) by the U.S. Food and Drug Administration [12], and some of its metal complexes are excellent catalysts with good controlled features for ROP of cyclic ester [13]. Based on these views, we have designed and synthesized a novel sterically bulky monovalent phenol ligand derived from EDBPH $_2$ and its related nontoxic sodium and potassium catalysts. The catalytic activities of sodium and potassium complexes towards ROP of lactides have been investigated, and the positive experimental results have proved that two designed catalysts, especially with sodium cation, are effective in the current ROP of lactides. According to the previous studies, a novel sterically bulky phenol and the corresponding metal complexes were prepared in an almost quantitative yield (Scheme 1) ¹ [14]. Single crystals of 1 and 2 suitable ^{*} Corresponding author. Fax: +86 931 8912582. E-mail addresses: wujc@lzu.edu.cn (J. Wu), chenlh2006@lzu.cn (L. Chen). $^{^{1}}$ (a) Data for ligand 3: (0.481 g, 89% Yield). 1 H NMR (300 MHz, CDCl₃): δ 7.27 (1H, d, J=2.4Hz, ArH); 7.23 (1H, d, J=2.4Hz, ArH); 7.13 (1H, d, J=2.4Hz, ArH); 7.09 (1H, d, J = 2.4Hz, ArH); 4.68 (1H, q, J = 7.2Hz, CH); 4.14–4.02 (2H, m, CH₂); 4.02–3.89 (2H, m, CH₂); 3.82–3.78 (2H, m, CH₂); 3.68–3.63 (2H, m, CH₂); 3.36 (3H, s, CH₃); 1.71 (3H, d, J = 6.9Hz, CH₃); 1.38 (9H, s, C(CH₃)₃); 1.36 (9H, s, C(CH₃)₃); 1.29 (9H, s, C(CH₃)₃); 1.24 (9H, s, C(CH₃)₃). $^{13}\text{C NMR}$ (75 MHz, CDCl₃): δ 151.13; 150.68; 146.58; 141.63; 140.95; 138.00; 135.24; 131.24; 123.34; 122.29; 121.28; 120.19; 74.95; 72.01; 71.09; 70.32; 59.03; 35.39; 35.06; 34.58; 34.35;31.74; 31.40; 29.73; 20.83. LC-MS: m/z 558.2 $[M + NH_4]^+$. Anal. Calcd for $C_{35}H_{56}O_4$: C, 77.73; H, 10.44. Found: C, 77.69; H, 10.42. (b) Data for sodium complex 1: (0.596 g, 91% Yield). ¹H NMR (300 MHz, CDCl₃): δ 7.46(2H, br, ArH); 7.23 (2H, br, ArH); 7.18 (2H, br, ArH); 6.99 (2H, s, ArH); 4.68 (2H, br, CH); 3.96 (4H, br, CH₂); 3.86 (4H, br, CH₂); 3.68 (4H, br, CH₂); 3.55 (4H, br, CH₂); 3.37 (6H, s, CH₃); 2.81 (6H, s, CH₃); 1.44 (18H, s, C(CH₃)₃); 1.40 (18H, s, C(CH₃)₃); 1.36 (18H, s, C(CH₃)₃); 1.26 (18H, s, C(CH₃)₃). ¹³C NMR (75 MHz, CDCl₃): δ 152.13; 151.68; 148.48; 143.63; 141.85; 138.70; 135.44; 132.04; 123.64; 122.89; 121.48; 120.39; 76.88; 72.13; 71.14; 59.06; 35.56; 35.87; 35.00; 34.63; 34.03; 31.90; 31.86; 21.75; 14.43 Anal. calcd for C₇₀H₁₁₀Na₂O₈: C, 74.69; H, 9.85. Found: C, 74.60; H, 9.83. (c) Data for complex 2: Yield 87%. ¹H NMR (300 MHz, CDCl₃): ¹H NMR (300 MHz, CDCl₃): δ7.51(2H, br, ArH);7.33 (2H, br, ArH); 7.24 (2H, br, ArH); 6.98(2H, s, ArH); 4.73 (2H, br, CH); 4.12 (4H, br, CH₂); 3.95 (4H, br, CH₂); 3.67 (4H, br, CH₂); 3.61 (4H, br, CH₂); 3.42 (6H, s, CH₃); 2.83 (6H, s, CH₃); 1.53 (18H, s, C (CH₃)₃); 1.46 (18H, s, C(CH₃)₃); 1.40 (18H, s, C(CH₃)₃); 1.28 (18H, s, C(CH₃)₃). ¹³C NMR (75 MHz, CDCl₃): δ 153.13; 152.18; 149.08; 143.73; 141.65; 138.77; 135.64; 132.14; 123.84; 122.79; 121.86; 120.99; 76.96; 72.23; 71.44; 59.86; 36.06; 35.88; 35.67; 34.93; 34.53; 31.96; 32.06; 21.95; 14.83 Anal. calcd for $C_{70}H_{110}K_2O_8$: C, 72.62; H, 9.58. Found: C, 72.60; H, 9.51. **Scheme 1.** Preparation of ligand and corresponding metal complexes. for X-ray structural determination were obtained from toluene 2 . The ORTEP drawing of the molecular structures of 1 and 2 are given in Figs. 1 and 2, respectively. The molecular structures of these compounds show that the two complexes have dimeric character, bridging with the oxygen atoms of the phenol group with similar structures. The geometry around of the sodium atoms in 1 is distorted tetrahedron, sodium interacted with two bridging phenolate oxygen atoms, and two oxygen atoms of 2-(2-methoxy-ethoxy)-ethyl group. Two sodium atoms in this complex are equivalent with Na–O bond distance of Na(1)–O(3) 2.494(2) Å, Na(1)–O(4) 2.409(3) Å, Na(1)–O(1) 2.183(2) Å, Na(1)–O(1A) 2.302(2) Å. The molecular structure of 2 is all similar to that of 1 with K–O bond distance of K(1)–O(3) 2.692 (3) Å, K(1)–O(4) 2.686(4) Å, K(1)–O(1) 2.481(3) Å, K(1)–O(1A) 2.625 (3) Å. Complexes 1 and 2 (0.02 mmol) as catalyst are systematically tested for the ring-opening polymerization of lactides in THF (10 mL) at 60 °C, as shown in Table 1. Experimental results indicate that both complex 1 and 2 are efficient in the ROP of L-lactides, and the polymerization is completed within 36 h at 60 °C. The reaction conversion could reach 93.4% with complex 1 as the catalyst at a monomer-to-catalyst ratio of 100:1 (Table 1, entry 1). It is interesting that EDBP-Na reported by Lin [6] catalyzes the ROP of L-lactide with methanol as initiator, while complex 1 can catalyzes the reaction directly without methanol. Actually complex 1 cannot activate methanol to initiate the ROP of lactide, because methanol cannot easily replace long ether group to coordinate to Na⁺ and be activated to initiate the ROP reaction. For the different ROP mechanism, the activity of complex 1 is lower comparing to EDBP-Na. A good polymerization control is demonstrated by the linear relationship between Mn and $[LA]_0/[complex]_0$ and the polymers with low PDI, ranging from 1.28 to 1.36 (Fig. 3). The 1H NMR of PLLA with $[LA]_0/[complex]_0$ ratio of 100 show a characteristic methine peak (Fig. 4) at 4.36 ppm and broad carboxyl terminal group peak at 3.74 ppm in CDCl₃, indicating that the two terminal groups of the polymer are the hydroxyl and carboxyl terminal group respectively. LC–MS mass spectrum was employed to investigate the components of the end group of the polymer at the same ratio. The spectrum shows that oligomers HO (COCHMeO) $_nH\cdot M^+$ (M=K, Na) were obtained in the protic reagent (Fig. 5). Furthermore, epimerization of the chiral centers in PLLA does not occur, which confirmed by the study of homonuclear decoupled 1H NMR in the methine region [15]. Additionally, an acceptable polymerization control also is demonstrated by the study on the linear relationship between Mn and $[LA]_0/[complex]_0$ with complex 2 as the catalyst at every monomer-to-catalyst (Fig. 6) (Table 1, entry 6–9). The PDI of the **Fig. 1.** X-ray structure of complex 1 as 30% ellipsoids (methyl carbons of the *tert*-butyl groups are omitted for clarity, hydrogen atoms omitted). Selected bond lengths (Å): Na (1)–O(3) 2.494(2), Na(1)–O(4) 2.409(3), Na(1)–O(1) 2.183(2), Na(1)–O(1A) 2.302(2). $^{^{2}}$ (a) Crystal data for sodium complex: C₄₂H₆₃NaO₄, *M* = 654.91, monoclinic, space group *P*2(1)/*c*, *a* = 16.6089(4) Å, *b* = 14.6139(4) Å, *c* = 17.1502(4) Å, *α* = 90.00, β=91.7240(10), γ=90.00, *V* = 4160.83(18) Å³, *T* = 296(2) K, Z=4, Dc = 1.044 g/cm³, F₀₀₀ = 1428, 2 θ_{max} = 26.50, 24367 reflections collected, 8593 unique (*R*-int = 0.0808), no. of observed reflections 3732 (*I*>2*σ*(*I*)); *R*₁ = 0.0684, w*R*₂ = 0.1808. (b) Crystal data for potassium complex: C₄₂H₆₃KO₄, *M* = 671.02, monoclinic, space group *P*2(1)/*c*, *a* = 16.6160(4) Å, *b* = 15.0181(4) Å, *c* = 17.1759(5) Å, *α* = 90.00, β=90.3110(10), γ=90.00, *V* = 4286.0(2) Å³, *T* = 296(2) K, Z=4, Dc = 1.038 g/cm³, F₀₀₀ = 1460, 2 θ_{max} = 20.40, 13877 reflections collected, 4211 unique (*R*_{int} = 0.0302), no. of observed reflections 3097 (*I*>2*σ*(*I*)); *R*₁ = 0.0559, w*R*₂ = 0.1507. #### Download English Version: ## https://daneshyari.com/en/article/1305828 Download Persian Version: https://daneshyari.com/article/1305828 Daneshyari.com