#### Inorganica Chimica Acta 364 (2010) 167-171

Contents lists available at ScienceDirect

### Inorganica Chimica Acta

journal homepage: www.elsevier.com/locate/ica



# Reduction chemistry of the mixed ligand metallocene $[(C_5Me_5)(C_8H_8)U]_2(\mu$ -C<sub>8</sub>H<sub>8</sub>) with bipyridines

Michael K. Takase, Ming Fang, Joseph W. Ziller, Filipp Furche, William J. Evans\*

Department of Chemistry, University of California, Irvine, CA 92697-2025, USA

#### ARTICLE INFO

Article history: Available online 30 July 2010

Dedicated to Professor Arnold Rheingold for his extensive contributions to chemistry and for his extraordinary efforts to make crystallographic data more accessible to everyone.

Keywords: Non-innocent ligand Redox Cyclopentadienyl Cyclooctatetraenyl Uranium Bipyridine

#### ABSTRACT

The U<sup>4+</sup> cyclooctatetraenyl complex, [(C<sub>5</sub>Me<sub>5</sub>)(C<sub>8</sub>H<sub>8</sub>)U]<sub>2</sub>( $\mu$ -C<sub>8</sub>H<sub>8</sub>), **1**, reacts with two equiv of 4, 4'-dimethyl-2,2'-bipyridine (Me<sub>2</sub>bipy) and 2 equiv of 2,2'-bipyridine (bipy) to form 2 equiv of ( $\eta^{5}$ -C<sub>5</sub>Me<sub>5</sub>)( $\eta^{8}$ -C<sub>8</sub>H<sub>8</sub>)U(Me<sub>2</sub>bipy- $\kappa^{2}$ N,N') and ( $\eta^{5}$ -C<sub>5</sub>Me<sub>5</sub>)( $\eta^{8}$ -C<sub>8</sub>H<sub>8</sub>)U(bipy- $\kappa^{2}$ N,N'), respectively. X-ray crystallography, infrared spectroscopy, and density functional theory calculations indicate that the products are best described as U<sup>4+</sup> complexes of bipyridyl radical anions. Hence, only one of the (C<sub>8</sub>H<sub>8</sub>)<sup>2-</sup> ligands in **1** acts as a reductant and delivers 2 electrons per equiv of **1**. Since the reduction potentials of uncomplexed (C<sub>8</sub>H<sub>8</sub>)<sup>2-</sup>, Me<sub>2</sub>bipy, and bipy are -1.86, -2.15, and -2.10 V vs SCE, respectively, it is likely that prior coordination of the bipyridine reagents enhances the electron transfer.

© 2010 Elsevier B.V. All rights reserved.

#### 1. Introduction

 $[(C_5Me_5)(C_8H_8)U]_2(\mu-C_8H_8)$ , **1**, is a U<sup>4+</sup> complex that has recently been studied to define the capacity of ligand based reduction in organoactinide chemistry [1–5]. Complex **1** typically effects two electron reduction chemistry to make U<sup>4+</sup> products formally using one of its three  $(C_8H_8)^{2-}$  ligands as the reducing agent. Scheme 1 shows the formal half reaction and Scheme 2 shows an example with phenazine [2].

The combination of an electron and a  $[(C_5Me_5)(C_8H_8)U]^{1+}$  cation in Scheme 1 is formally equivalent to the U<sup>3+</sup> complex,  $(C_5Me_5)$  $(C_8H_8)U$ , and it is conceivable that the reductions involving **1** could go through U<sup>3+</sup> intermediates. The chemistry of cyclopentadienyl cyclooctatetraenyl U<sup>3+</sup> complexes was originally examined in the 1990s with the solvated complex  $(C_5Me_5)(C_8H_8)U$ (THF), **2** [6].

The reaction of **1** with 4,4'-dimethyl-2,2'-bipyridine (Me<sub>2</sub>bipy) was of interest because it had earlier been reported that **2** reacts with Me<sub>2</sub>bipy, not by reduction, but by ligand substitution to make a product formulated as a U<sup>3+</sup> complex of the neutral bipyridine, (C<sub>5</sub>Me<sub>5</sub>)(C<sub>8</sub>H<sub>8</sub>)U(Me<sub>2</sub>bipy), **3**, Scheme 3. If **1** made the same product, it would be an example in which the (C<sub>8</sub>H<sub>8</sub>)<sup>2–</sup>-based reduction resulted in a metal oxidation state change rather than a substrate

reduction. Since the  $(C_8H_8)^{2-}$  ligands in **1** do not reduce the U<sup>4+</sup> ions in **1**, this would be a case in which there was a delicate balance in the location of electrons depending on the composition of the specific system.

The reactions of **1** with bipyridines were also of interest since the redox potential for the  $C_8H_8/(C_8H_8)^{2-}$  couple is -1.86 V vs SCE [7], whereas the reduction potentials of Me<sub>2</sub>bipy and bipy are -2.15 and -2.10 V vs SCE, respectively [8]. On the basis of the redox potentials of these species in the absence of a metal, reduction of the bipyridines by  $(C_8H_8)^{2-}$  would not be expected. It has previously been found that **1** does not reduce anthracene (-1.98 V vs SCE) [9], acenaphthylene, (-1.65 V vs SCE) [9], or benzanthracene (-1.58 V vs SCE) [9]. Reduction of bipyridines by **1** would indicate an influence by the metal in the reduction process. To examine this possibility, the reactions of **1** with Me<sub>2</sub>bipy and the unsubstituted bipy were performed and the products were analyzed by X-ray crystallography, infrared spectroscopy, and density functional theory calculations.

#### 2. Experimental

#### 2.1. Materials and methods

The syntheses and manipulations described below were conducted under argon with rigorous exclusion of air and water using



<sup>\*</sup> Corresponding author. Tel.: +1 949 8245174; fax: +1 949 8242210. *E-mail address:* wevans@uci.edu (W.J. Evans).

<sup>0020-1693/\$ -</sup> see front matter @ 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.ica.2010.07.074



glovebox, vacuum line, and Schlenk techniques. Solvents were dried over columns containing Q-5 and molecular sieves. NMR solvents were dried over sodium potassium alloy, degassed, and vacuum transferred prior to use. <sup>1</sup>H NMR spectra were recorded with a Bruker DRX 500 MHz spectrometer.  $[(C_5Me_5)(C_8H_8)U]_2(\mu-C_8H_8)$ , **1**, was prepared as previously described [5]. 4,4'-Dimethyl-2,2'-bipyridine (Me<sub>2</sub>bipy) and 2,2'-bipyridine (bipy) were purchased from Aldrich and sublimed before use. Elemental analyzes were performed on a Perkin–Elmer 2400 CHNS elemental analyzer.

#### 2.2. Synthesis of $(\eta^5 - C_5 M e_5)(\eta^8 - C_8 H_8)U(M e_2 bipy - \kappa^2 N, N')$ , **4**

A colorless solution of Me<sub>2</sub>bipy (35 mg, 0.19 mmol) in benzene was added to a dark brown solution of 1 (100 mg, 0.094 mmol) in benzene (6 mL) and stirred overnight. The solvent was removed under vacuum to yield **4** as a dark brown powder (124 mg, 99%). In an NMR scale experiment, free C<sub>8</sub>H<sub>8</sub> was observed at 5.6 ppm in a 1:2 molar ratio with 4 by <sup>1</sup>H NMR spectroscopy. To confirm the identity of 4, crystals suitable for X-ray diffraction were grown at -35 °C from a concentrated toluene solution. The complex crystallized in the space group  $P2_1/c$  in a solvate free form. Crystallization of **4** from a toluene/Et<sub>2</sub>O mixture at  $-35 \degree$ C gave single crystals of  $(\eta^5-C_5Me_5)(\eta^8-C_8H_8)U(Me_2bipy-\kappa^2N,N')$  (solvent), 5, that had solvent in the cell lattice and crystallized in the *Pna2*<sub>1</sub> space group that matched that for  $(\eta^5-C_5Me_5)(\eta^8-C_8H_8)U(Me_2bipy-\kappa^2N,N')$ .  $(Et_2O)$ , **3**  $(Et_2O)$ , in the literature [6]. The structure of **5** is isomorphous with  $3(Et_2O)$  [6], but the ligands on uranium were disordered and there were high thermal parameters on the lattice solvent that was modeled as toluene. <sup>1</sup>H NMR ( $C_6D_6$ ):  $\delta$  103.9 (s,  $\Delta v_{\frac{1}{2}} = 28$  Hz, 6H, *Me*<sub>2</sub>bipy), 2.3 (s,  $\Delta v_{\frac{1}{2}} = 13$  Hz, 15H, C<sub>5</sub>*Me*<sub>5</sub>), -13.5 (s,  $\Delta v_{\frac{1}{2}} = 6$  Hz, 2H, Me<sub>2</sub>bipy), -15.9 (s,  $\Delta v_{\frac{1}{2}} = 48$  Hz, 8H,  $C_8H_8$ ), -52.0 (s,  $\Delta v_{\frac{1}{2}}$  = 35 Hz, 2H, Me<sub>2</sub>bipy), -112.3 (s,  $\Delta v_{\frac{1}{2}}$  = 56 Hz, 2H, Me<sub>2</sub>bipy). <sup>1</sup>H NMR (THF-d<sub>8</sub>):  $\delta$  100.5 (s,  $\Delta v_{\frac{1}{2}}$  = 26 Hz, 6H, Me<sub>2</sub>bipy), 1.9 (s,  $\Delta v_{1/2} = 12$  Hz, 15H, C<sub>5</sub>Me<sub>5</sub>), -11.3 (s,  $\Delta v_{1/2} = 6$  Hz, 2H, Me<sub>2</sub>*bipy*), -15.9 (s,  $\Delta v_{\frac{1}{2}}$  = 45 Hz, 8H, C<sub>8</sub>H<sub>8</sub>), -52.4 (s,  $\Delta v_{\frac{1}{2}}$  = 32 Hz, 2H, Me<sub>2</sub>bipy), -104.8 (s,  $\Delta v_{1/2}$  = 63 Hz, 2H, Me<sub>2</sub>bipy). IR: 3030m, 2900s, 2852s, 2197m, 1569s, 1491s, 1469m, 1417s, 1326m, 1268m, 1219w, 1180w, 971m, 959s, 901m, 818w, 771w, 722s, 675w cm<sup>-1</sup>. Anal. Calc. for C<sub>30</sub>H<sub>35</sub>N<sub>2</sub>U: C, 54.46; H, 5.33; N, 4.23. Found: C, 54.89; H, 5.38; N, 4.45%.

#### 2.3. Synthesis of $(\eta^5 - C_5 M e_5)(\eta^8 - C_8 H_8) U(bipy - \kappa^2 N, N')$ , **6**

A colorless solution of bipy (30 mg, 0.19 mmol) in benzene was added to a dark brown solution of **1** (100 mg, 0.094 mmol) in benzene (6 mL) and stirred overnight. The solvent was removed under vacuum to yield **6** as a dark brown powder (115 mg, 96%). In an NMR scale experiment, free  $C_8H_8$  was observed at 5.6 ppm in a 1:2 molar ratio with **6** by <sup>1</sup>H NMR spectroscopy. Crystals of **6** 



suitable for X-ray diffraction were grown at -35 °C from a concentrated toluene solution. <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  2.8 (s, 15H, C<sub>5</sub>*Me*<sub>5</sub>), -15.9 (s, 8H, C<sub>8</sub>H<sub>8</sub>), -62.8 (s, 2H, *bipy*), -116 (s, 2H, *bipy*), -118 (s, 2H, *bipy*). IR: 3030s, 2969s, 2946s, 2896s, 2851s, 2613m, 2187m, 1501s, 1453s, 1411s, 1374m, 1349m, 1297m, 1257w, 1222w, 1150m, 1083m, 1019m, 949s, 754w, 720s, 683w cm<sup>-1</sup>. *Anal.* Calc. for C<sub>28</sub>H<sub>31</sub>N<sub>2</sub>U: C, 53.08; H, 4.93; N, 4.42. Found: C, 52.72; H, 4.86; N, 4.40%.

#### 2.4. X-ray crystallographic data

Information on X-ray data collection, structure determination, and refinement for **4**, **5**, and **6** are given in Table 1. Details are given in the Supplementary material.

#### 2.5. Computational details

The structures of **4** and **6** were initially optimized using the TPSSH [10] hybrid meta-GGA functional and split valence basis sets with polarization functions on non-hydrogen atoms (SV(P)) [11]. TPSSH was chosen due to its established performance for transition metal compounds [12,13]. Relativistic small-core pseudopotentials [14] were employed for U. Fine quadrature grids (size m4) [15] were used throughout. The multipole-accelerated resolution of the identity (MARI-J) approximation for the Coulomb energy was used throughout [16]. All structures were found to be minima.

#### Table 1

X-ray data collection parameters for  $(\eta^{5}-C_{5}Me_{5})(\eta^{8}-C_{8}H_{8})U(Me_{2}bipy-\kappa^{2}N,N')$ , **4**,  $(\eta^{5}-C_{5}Me_{5})(\eta^{8}-C_{8}H_{8})U(Me_{2}bipy-\kappa^{2}N,N')$  (toluene), **5**, and  $(\eta^{5}-C_{5}Me_{5})(\eta^{8}-C_{8}H_{8})U(bipy-\kappa^{2}N,N')$ , **6**.

| Empirical formula                       | $C_{30}H_{35}N_2U$ 4 | $C_{30}H_{35}N_{2}U\cdot C_{7}H_{8}\text{, }\textbf{5}$ | $C_{28}H_{31}N_2U\;{\bm 6}$ |
|-----------------------------------------|----------------------|---------------------------------------------------------|-----------------------------|
| Formula weight                          | 661.63               | 753.76                                                  | 633.58                      |
| T (K)                                   | 103(2)               | 103(2)                                                  | 103(2)                      |
| Crystal system                          | Monoclinic           | Orthorhombic                                            | Monoclinic                  |
| Space group                             | $P2_1/c$             | Pna21                                                   | $P2_1/n$                    |
| a (Å)                                   | 12.8073(7)           | 10.0141(7)                                              | 9.9021(8)                   |
| b (Å)                                   | 11.4579(6)           | 21.7886(15)                                             | 16.7155(13)                 |
| c (Å)                                   | 18.1385(10)          | 13.8893(9)                                              | 13.8869(11)                 |
| α(°)                                    | 90                   | 90                                                      | 90                          |
| β (°)                                   | 110.5770(10)         | 90                                                      | 91.4970(10)                 |
| γ (°)                                   | 90                   | 90                                                      | 90                          |
| V (Å <sup>3</sup> )                     | 2491.9(2)            | 3030.6(4)                                               | 2297.8(3)                   |
| Ζ                                       | 4                    | 4                                                       | 4                           |
| $ ho_{\rm calc}~({ m mg/m^3})$          | 1.764                | 1.652                                                   | 1.831                       |
| $\mu$ (mm <sup>-1</sup> )               | 6.534                | 5.384                                                   | 7.082                       |
| $R_1 [I > 2.0\sigma (I)]^a$             | 0.0273               | 0.0369                                                  | 0.0165                      |
| wR <sub>2</sub> (all data) <sup>a</sup> | 0.0647               | 0.0945                                                  | 0.0402                      |
|                                         |                      |                                                         |                             |

<sup>a</sup> Definitions:  $wR_2 = [\Sigma [w(F_0^2 - F_c^2)^2] / \Sigma [w(F_0^2)^2]]^{1/2}, R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|.$ 



Download English Version:

## https://daneshyari.com/en/article/1306699

Download Persian Version:

https://daneshyari.com/article/1306699

Daneshyari.com