Inorganica Chimica Acta 436 (2015) 39-44

Contents lists available at ScienceDirect

Inorganica Chimica Acta

journal homepage: www.elsevier.com/locate/ica

spectroscopy, and single crystal X-ray diffractions analyses

Intramolecularly coordinated organocadmium iodides

T. Řičica^a, L. Dostál^a, M. Bouška^b, A. Růžička^a, R. Jambor^{a,*}

^a Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 95, CZ-532 10 Pardubice, Czech Republic ^b Department of Graphic Arts and Photophysics, Faculty of Chemical Technology, University of Pardubice, Studentská 95, CZ-532 10 Pardubice, Czech Republic

ARTICLE INFO

ABSTRACT

Article history: Received 20 May 2015 Received in revised form 10 July 2015 Accepted 15 July 2015 Available online 21 July 2015

Keywords: $N \rightarrow Cd$ coordination Chelating ligand Cadmium iodide NMR spectroscopy X-ray diffraction analysis

1. Introduction

Synthesis of organoderivatives RMMR (R is organic or related substituent) of the group 12 elements (Zn, Cd, and Hg) having M-M bond has proven to be a considerable synthetic challenge. The molecular M(I) compounds of formula RMMR were thought to exist only as short-lived transient species [1]. In 1999, Apeloig and co-workers reported the first stable, molecular, σ -bonded mercurv(I) compound in the form of the silvl derivative Hg₂[Si(SiMe₂SiMe₃)₃]₂ [2]. In 2004, the landmark compound, $Zn_2Cp_2^*$ ($Cp^* = C_5Me_5$) featuring a Zn–Zn bond was reported by Carmona and co-workers [3]. Subsequent work led to the preparation and characterization of $Zn_2[HC(CMeNAr)_2]_2$ (Ar = 2,6-^{*i*}Pr₂C₆H₃) [4] and Zn_2Ar_2 (Ar = C₆H₃-2,6-(C₆H₃-2,6-Pr¹₂)₂) [5]. Later on, the first structurally characterized stable molecular species containing a Cd-Cd bond was reported [6]. In 2007, Power and co-workers reported on the synthesis of the homologous M-M bonded compounds ArMMAr (M is Zn, Cd, or Hg) that were stabilized by sterical bulky ligand $\{2,6-(C_6H_3-2,6-{}^{i}Pr_2)_2C_6H_3\}^-$ [2]. As the synthesis of the organoderivatives RMMR is usually accompanied with the reduction of the parent arylmetal halides ArMX (X = Cl, Br or I), the synthesis of the latter precursors is thus very important step.

The field of main group element demonstrated that application of Y,C,Y-chelating build-in ligands can be an alternative pathway to sterical demanding ligands for the stabilization of the metal-metal

bonds, where the metal atoms are in the formal oxidation state +I [7].

The synthesis of the compounds $[L^1Cd(\mu-I)]_2$ (1), $L^2Cd(\mu-I)_2$ ·Li(THF)₂ (2), and $[L^3\cdot CdI_2]$ (3) with $L^1 = \{2, 6-1\}$

 $(Me_2NCH_2)_2C_6H_3)^{-}, L^2 = \{2,6-[(CH_3)C = N(C_6H_3 - 2',6' - P_7_2)]_2C_6H_3)^{-} \text{ and } L^3 = \{2-[(CH_3)C = N(C_6H_3 - 2,6 - P_7_2)]_2C_6H_3)^{-} + (C_6H_3 - P_7_2)]_2C_6H_3)^{-} + (C_6H_3)^{-} +$

6-(CH₃O)}C₅H₃N) is reported. The compounds were characterized by elemental analyses, ¹H and ¹³C NMR

However, the literature search showed that the applying of N,Cor N,C,N-chelating ligands in the chemistry of Zn or Cd provided homoleptic intramolecularly N-stabilized organozinc, or cadmium compounds of the general formula MR_2 (M = Zn, Cd; R = {2- $(CH_2NEt_2)C_6H_4$ ⁻, {2,6- $(CH_2NMe_2)_2C_6H_3$ ⁻, {2,6- $(CH_2NEt_2)_2C_6H_3$ ⁻, $\{2,6-[CH=N(2',6'-{}^{i}Pr_{2}C_{6}H_{3})]_{2}C_{6}H_{3}\}^{-},\$ $\{(CH_2)_3NMe\}^-$. or $\{(CH_2)_3NC_5H_{10}\}^-$ [8]. Similarly, the group of Beck and Schmidt used C,N-chelating ligand { $[(2,6-^{i}Pr_{2}C_{6}H_{3})N=CH]C_{6}H_{3}(OCH_{2}O)$ } for the synthesis of homoleptic organozinc compound $Zn\{[(2,6^{-i}Pr_2C_6H_3)N=CH]C_6H_3(OCH_2O)\}_2$, regardless of the stoichiometry used [9]. Finally, Liu and co-workers reported on the synthesis of $\{2,6-[CH=N(2',6'-Pr_2C_6H_3)]_2C_6H_3\}$ ZnEt by the use of *N*,*C*,*N*-chelating ligand [10]. These examples demonstrate, that the monoanionic *N*,*C*,*N*-chelating ligands were not able to stabilize the parent organozinc, or cadmium halides ArMX (X = Cl, Br or I).

This forces us to apply two different N,C,N-chelating ligands $\{2,6-(CH_2NMe_2)_2C_6H_3)\}^-$ (hereafter, assigned as L¹) and $\{2,6 [(CH_3)C=N(C_6H_3-2',6'-{}^iPr_2)]_2C_6H_3]^-$ (hereafter, assigned as L^2) to stabilize heteroleptic $N \rightarrow Cd$ coordinated organocadmium iodides $[L^{1}Cd(\mu-I)]_{2}$ (1), $L^{2}Cd(\mu-I)_{2}\cdot Li(THF)_{2}$ (2). We have also applied neuligand $\{2-[(CH_3)C=N(C_6H_3-2,6^{-i}Pr_2)]-6-$ N.N-chelating tral (CH_3O) (hereafter, assigned as L³) for the synthesis of complex $[L^3 \cdot CdI_2]$ (3), where monomeric CdI₂ fragment is coordinated by two N \rightarrow Cd interactions. The synthesis of **3** allowed us to compare the strength of both $N \rightarrow Cd$ interactions found in organocadmium iodides 1 and 2 with those found in *N*-coordinated CdI₂ in 3. It is worth noticing, that the reaction of DIMPY ligand, as a close

Inorganica Chimica Acta

© 2015 Elsevier B.V. All rights reserved.

^{*} Corresponding author. Fax: +420 466037068. E-mail address: roman.jambor@upce.cz (R. Jambor).

neutral *N,N,N*-analogue of L^2 , with CdI_2 did not provide any complex (DIMPY = {2,6-[(CH₃)C=N(C₆H₃-2,6-^{*i*}Pr₂)]}C₅H₃N, see Supporting Information).

The compounds **1–3** were characterized by elemental analyses, ¹H and ¹³C NMR spectroscopy, and single crystal X-ray diffractions analyses.

2. Result and discussion

2.1. Synthesis of compounds 1-3

The treatment of L¹Li with one molar equivalent of CdI₂ yielded the N \rightarrow Cd coordinated dimeric organocadmium iodide [L¹Cd (µ-I)]₂ (**1**). In contrast, the reaction of L²Li with CdI₂ provided monomeric N \rightarrow Cd coordinated compound L²CdI, that co-crystalizes with LiI to yield L²Cd(µ-I)₂·Li(THF)₂ (**2**) (see Scheme 1).

After the synthesis of $N \rightarrow Cd$ coordinated organocadmium iodides **1** and **2**, we have focused on the stabilization of $N \rightarrow Cd$ coordinated monomeric CdI₂ fragment. Thus the reaction of CdI₂ with the neutral *N*,*N*-chelating ligand L³ provided the parent complex [L³·CdI₂] (**3**), containing $N \rightarrow Cd$ coordinated CdI₂ fragment (Scheme 2).

2.2. Molecular structures of 1-3

Crystals suitable for single crystals X-ray diffraction analysis of 1 and $2 \cdot C_7 H_8$ were obtained from saturated hexane (1) or toluene (2) solutions at 4 °C or -20 C, respectively. The molecular structures of 1 and $2 \cdot C_7 H_8$ are shown in Figs. 1 and 2, respectively, and selected bond lengths and angles are given in Table 1. The crystallographic data are given in Table 2.

The molecular structure of **1** reveals the presence of centrosymmetric dimer $[L^1Cd(\mu-I)]_2$ with iodine atoms in bridging positions. The iodine atom 11a of the L^1CdI fragment coordinates cadmium atom Cd1 of the second molecule with 11a–Cd1 bond distance of 2.9288(5) Å, that is longer that the sum of the covalent radii of cadmium and iodine ($\sum_{cov}(Cd,I) = 2.67$ Å) [11], but shorter than the sum of the van der Waals radii ($\sum_{vdw}(Cd,I) = 3.56$ Å) [12] of the

corresponding atoms indicating a weak electrostatic $I \rightarrow Cd$ interaction. In addition, the Cd1 atom is coordinated by two $N \rightarrow Cd$ interactions with distances 2.6441(3) (Cd1–N1) and 2.684(3) Å (Cd1–N2), by one carbon atom (Cd1–C1 2.136(4) Å) and one iodine atom (Cd1–I1 2.7870(4) Å). As the result, compound **1** contains a five-coordinated distorted square pyramidally configurated Cd1 atom with square base plane defined by the C1, I1, N1 and N2 atoms with the bond angle N1–Cd1–N2 of 145.13(11)° and C1–Cd1–I1 of 145.13(11)°. The I1a atom occupies the apical position and its distance from the square base plane is 3.4356(3) Å (0.5410(3) Å for the Cd1 atom). The overall geometry of **1** is similar to that found in organocadmium iodine [ArCd(μ -I)]₂ stabilized by sterical bulky organic ligand {2,6-(2,6-ⁱPr₂-C₆H₃)₂C₆H₃]⁻ [2].

In $2 \cdot C_7 H_8$, the cadmium atom of monomeric unit L²CdI is further coordinated by iodine atom I2 (Cd1-I2 = 2.8042(6)Å) of LiI that was formed during the reaction. As the result, the Cd1 atom is five-coordinated by two $N \rightarrow Cd$ interactions with distances 2.566(4) Å (Cd1-N1) and 2.626(4) Å (Cd1-N2), one carbon atom (Cd1-C1 2.157(4)Å) and two iodine atoms with distances (Cd1-I1 2.8039(6) Å). The Cd1 atom shows a distorted trigonalbipyramidal environment with the C1, I1, I2 atoms located in equatorial positions while the N1 and N2 atoms occupy the axial positions similarly to 1. The N1-Cd1-N2 bond angle of 142.53(12)° and the I1–Cd1–I2 angle of 100.38(2)° represent the largest deviation from an ideal shape. Both Cd-I distances in $2 \cdot C_7 H_8$ are similar that is in contrast to different Cd–I bond distances found in 1 (2.7870(4)/2.9288(5) Å). The overall composition of $2 \cdot C_7 H_8$ can be defined as close contact ion pair consisting of Li cation and organocadmium $[L^2CdI_2]^-$ anion. The presence of two similar Cd-I bonds can be result of the negatively charged cadmium atom in $[L^2CdI_2]^-$ moiety. Although the Cd–I bond lengths are equal, the bond lengths of Li to I1 and I2 are significantly different (2.820(9)/2.765(9) Å). The coordination sphere of the Li cation is completed by two THF molecules. The bonding situation found in 2.C7H8 closely resembles those stabilized by 2-[(2,6-diisopropylphenyl)amino]-4-[(2,6-diisopropylphenyl)imino]pent-2-ene (NacNacH) ligand in the complex NacNacCd(μ -I)₂·Li(OEt₂)₂ [13]. The Cd-I bond distances (2.7518(7)/2.7920(7)Å) in the latter

Scheme 1. Synthesis of $N \rightarrow Cd$ organocadmium iodides **1** and **2**.

Download English Version:

https://daneshyari.com/en/article/1307624

Download Persian Version:

https://daneshyari.com/article/1307624

Daneshyari.com