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a b s t r a c t

Palladium plays an almost exclusive role as catalyst in the alkoxycarbonylation of various substrates to
produce esters or lactones, by incorporation of CO and a alcohol. The coordination sphere can be adapted
by introduction of mono- or bidentate phosphorus-containing ligands, providing efficient tools to obtain
with high turnovers, regio- and even enantioselectivities the incorporation of a COOR function onto a car-
bon atom. The use of CO, surrogates such as formates or even carbon dioxide are explored to operate this
reaction. Adapted catalytic systems have been designed, sometimes with the assistance of microwave
irradiation, to have an immobilization in Ionic Liquids, or scCO2, or on various supports.

Even if less expensive metals than palladium are explored to provide comparable performances, green
efficient tools are at the disposal of chemists leading to bulk and fine products as well.
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0. Introduction

Late transition metal complexes allow transforming an
unsaturated substrate by carbon monoxide embedding, so that
functionalities can be produced which are of crucial interest in
the fine chemistry. In the context of the sustainable development,
the use of cheap and abundant building blocks for synthesizing val-
ue molecules represent an efficient way provided the catalyst pre-
cursor complex is efficient to give the only one expected product
and to be fully recovered after catalysis. Since the pioneering work
of the Reppe’s research group at BASF on the carbonylation of acet-
ylene in the presence of water to synthesize acrylic acid (Eq. (1))
with large amounts of [Ni(CO)4] at 100 bar and 220–230 �C [1,2],
many catalytic systems have been elaborated to transform an
alkene or an alkyne into the corresponding acid or ester.

HC CH + CO + H2O
Ni(CO)4

C
OH

O
ð1Þ

Thus, an unsaturated substrate gives rise to an acid or an ester
with one more carbon atom. For instance, methyl acrylate can be
prepared directly from acetylene, carbon monoxide and methanol
at 30 bar and 160 �C starting from NiBr2, [Ph3BuP]Br and
[BuPyridyl]Br and the reaction can be easily extended to higher
alcohols [3]. This reaction is no more operated on the industrial
scale, and the carbonylation of propyne by the Shell process,
involving a palladium acetate precursor, methyldi(2-pyridyl)phos-
phine in acidic medium, at 60 bar and 80 �C in the presence of
methanol, with a 99.1% selectivity, has not been developed due
to the high price of the alkyne [4]. A large part of the ca 3 mil-
lion tons of global methyl acrylate production involves the
methoxycarbonylation of ethylene to produce methyl propanoate,
that is further reacted with formaldehyde to obtain with a 93%
selectivity methyl methacrylate at a ca 40% lower cost than the
classical hydrocyanation process of acetone [5,6].

The alkoxycarbonylation reaction, also called hydroesterifica-
tion reaction, to produce esters has been covered by several
relatively recent reviews, some of them focused on the mechanism
of the methoxycarbonylation versus the CO/ethylene co-polymer-
ization [7], on the asymmetric version [8–10], the various palladi-
um complexes active in the carbonylation of alkene/alkyne
substrates [11,12]. It appears attractive in this present contribution
to emphasize the new trends published since 2006 and to focus on
the improvements which have been elaborated to obtain efficient
catalytic systems for reaching high atom-economy performances
in this reaction. We analyze more especially the alkenes/alkynes,
alkyl- and aryl halides starting substrates, new carbonylation

reactants such as CO2 and formyl compounds and the emerging
trends that appear in the literature.

1. Alkoxycarbonylation of alkenes and alkynes

Palladium complexes play a key-role in these carbonylation
reactions affording the corresponding esters, because they work
under mild conditions and allow for a broad substrate scope. A
general didactic description has recently been published on the
potential of this reaction [13,14]. In order to promote very selective
reactions operating under stable conditions, it is crucial to deter-
mine which reaction parameters have a key role along the catalytic
cycle. Since the initial works of Heck on palladium [15] and Knifton
on platinum [16] mechanistic studies have been performed to
highlight the main role of each parameter in the two catalytic
cycles, which involve the more often proposed palladium-hydride
pathway over the palladium–alkoxycarbonyl mechanism [17–21],
sometimes transposed from studies in hydroxycarbonylation
[22]. Moreover, recent kinetic investigations and theoretical calcu-
lations mainly confirm the formation, in the presence of acid pro-
moters, of the palladium hydride active species either for alkenes
[23,24] or for alkynes [25,26]. Along the catalytic cycle, the hydride
transfer on one carbon atom of the coordinated alkene to palladi-
um, to generate the alkyl species, is the discriminating step for
the regioselectivity in the formation of the two linear/branched
corresponding esters. The rate-determining step is the reaction of
the alcohol onto the intermediate acyl species, generally called
alcoholysis, providing the ester and restoring the active [Pd-H]
active species [23].

1.1. Intermolecular alkoxycarbonylation of an alkene

In many reports, the active species is generated in situ from a
palladium salt (inter alia PdCl2, Pd(OAc)2, Pd(dba)2) a ligand and
a promoter being either a Brønsted or a Lewis acid. Generally, for
the carbonylation of a terminal alkene, addition to the palladium
salt of a monophosphine ligand gives mainly rise to the branched
isomer, whereas a diphosphine ligand significantly increases the
linearity and in the case of very crowded ligands it is possible to
reach 99.9%. In addition, the reaction parameters such as the CO
pressure, the temperature, the presence of a peculiar solvent and
an additive are adjusted in such a way that a high regioselectivity
is obtained [11].

1.1.1. Carbonylation of alkenes
It has been found that trifluoromethane sulfonic acid is a good

promoter to transform methyl pentenoate into dimethyladipate
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