

Available online at www.sciencedirect.com

Inorganica Chimica Acta 359 (2006) 1041-1049

Inorganica Chimica Acta

www.elsevier.com/locate/ica

Diphosphine substitution in pentakis(arylisocyanide)cobalt(I) complexes; ³¹P NMR, cyclic voltammetric and ESI mass spectrometry studies

F. Foster Mbaiwa *, C.A.L. Becker

Department of Chemistry, University of Botswana, Private Bag 0022, Gaborone, Botswana

Received 10 March 2005; received in revised form 14 November 2005; accepted 14 November 2005 Available online 20 December 2005

Abstract

Five new complexes of the type $[Co(CNC_6H_3iPr_2-2,6)_4PPh_2-R'-PPh_2]X$, $X = BF_4$, ClO_4 ; $R' = -(CH_2)_2 - (1)$, $-(CH_2)_3 - (2)$, $-CH=CH_trans$ (3), -C = C - (4) and $-C_6H_4-p$ (5); and two new bimetallic complexes, $[\{Co(CNC_6H_3iPr_2-2,6)_4\}_2(\mu-PPh_2(CH_2)_3PPh_2)](ClO_4)_2$ (6) and $[\{Co(CNC_6H_3iPr_2-2,6)_4\}_2(\mu-PPh_2C_6H_4PPh_2-p)](ClO_4)_2$ (7), have been synthesized and characterized by various spectroscopic methods. Known monometallic and bimetallic complexes bearing the ligand $CNC_6H_3Et_2-2,6$ instead of $CNC_6H_3iPr_2-2,6$ have been included in the ³¹P NMR, cyclic voltammetric and mass spectrometry studies. Comparison of the $CNC_6H_3iPr_2-2,6$ with the $CNC_6H_3Et_2-2,6$ complexes shows that the increased steric bulkiness of the former makes it more suitable for synthesis of the monometallic complexes, whilst the $CNC_6H_3Et_2-2,6$ is more apt to give bimetallic complexes. Thus, the two arylisocyanides are complementary with respect to synthesis of the monometallic and bimetallic complexes. The ³¹P NMR indicates that the diphosphines in monometallic complexes behave as non-fluxional, monodentate ligands at ambient temperature, with ³¹P_3^{-31}P coupling shown for the $PPh_2CH_2PPh_2$, $PPh_2(CH_2)_2PPh_2$ and $PPh_2C = CPPh_2$ ligands. Cyclic voltammetry fails to show electronic communication in the bimetallic complexes, and mass spectrometry indicates significantly greater stability for fragments containing potentially chelating diphosphines as compared to diphosphines that cannot chelate.

© 2005 Elsevier B.V. All rights reserved.

Keywords: Arylisocyanides; Diphosphines; Ligand substitution; ³¹P NMR; Cyclic voltammetry

1. Introduction

The combination of tertiary phosphine and organoisocyanide ligands in the synthesis of metal complexes is significant in that ligand modification can easily be done to achieve desired stereoelectronic properties. These ligand properties are important in most catalytic systems, e.g., in hydroformylation the selectivity has been found to depend on the cone angle of the diphosphine ligand [1].

Previous investigations of bidentate phosphine substitution in $[Co(CNC_6H_3Et_2-2,6)_5]BF_4$ lead to monosubstituted complexes of the types $[Co(CNC_6H_3Et_2-2,6)_4(L-L)]BF_4$ [2] and $[(2,6-Et_2C_6H_3NC)_4CoL-LCo(CNC_6H_3Et_2-2,6)_4]$ $(BF_4)_2$ [3], where L-L = Ph₂P(CH₂)_nPPh₂, n = 1-4; Ph₂-PC₆H₄PPh₂-*p*, Ph₂PCH=CHPPh₂-*trans*, Ph₂PC=CP Ph₂. Despite some of these diphosphines having the ability of chelate, no chelate compound was observed. Monometallic or bimetallic product was obtained depending primarily on whether the diphosphine or the cobalt(I) complex was in excess. ³¹P NMR, cyclic voltammetry, and mass spectrometry data were not available for these complexes. In this paper, monometallic and bimetallic complexes of the types $[Co(CNR)_4(L-L)]X$ and $[\{Co(CNR)_4\}_2(\mu-L-L)]$ - X_2 , $R = 2,6-iPr_2C_6H_3NC$, $X = ClO_4$, BF_4 , have been reported. Syntheses and properties for the complexes containing 2,6-iPr₂C₆H₃NC ligands have been compared and contrasted to the complexes containing 2,6-Et₂C₆H₃-NC ligands, the efficacy of the ³¹P NMR and ESI-MS in

^{*} Corresponding author. Tel.: +267 717 33909; fax: +267 355 2836. *E-mail addresses:* mbaiwaf@mopipi.ub.bw (F.F. Mbaiwa), Beckerca@ mopipi.ub.bw (C.A.L. Becker).

characterization of these types of compounds is demonstrated, and the possibility of electronic communication between the two cobalt centres in the bimetallic complexes is investigated using cyclic voltammetry.

2. Experimental

2.1. Materials and methods

PPh₂CH₂PPh₂ (dppm), PPh₂CH₂CH₂PPh₂ (diphos), PPh₂CH₂CH₂CH₂PPh₂ (dppp), PPh₂CH=CHPPh₂-trans (trans-dppe), PPh₂C=CPPh₂ (dppa) and PPh₂C₆H₄PPh₂p (p-dppb) were supplied by Strem Chemicals, Inc. and used without further purification. Tetra-n-butylammonium perchlorate (electrochemical grade) was supplied by Fluka. $[Co(CNC_6H_3iPr_2-2,6)_5]X$ and $[Co(CNC_6H_3Et_2-2,6)_5]X$, $X = ClO_4$ or BF₄, were synthesized as previously reported [4,5]. NMR measurements were performed on a Bruker Avance DPX 300 spectrometer. Chemical shift standards were internal tetramethylsilane for ¹H and external 85% H_3PO_4 for ³¹P. The solvent was CDCl₃. Elemental analyses were carried out on a Vario EL CHNOS Elemental analyzer. For cyclic voltammetry $\sim 1.0 \text{ mM}$ solutions of the compounds were prepared in dichloromethane containing 0.05 M tetra-n-butylammonium perchlorate as the supporting electrolyte. Cyclic voltammetry measurements were performed using a Metrohm 757 VA Computrace system with a three-electrode compartment cell. The working and auxiliary electrodes were both made of glassy carbon. The reference electrode was a double junction Ag/AgCl system. The voltammograms were recorded in the potential range -1.0 to 1.0 V vs. Ag/AgCl at various scan rates ranging from 0.05 to $0.25 \text{ V} \text{ s}^{-1}$. Nitrogen gas was bubbled through each solution for 500 s prior to each run. Infrared spectra were measured in the 4000–400 cm^{-1} range with a Spectrum 2000 Perkin-Elmer FT-IR spectrometer using Nujol mull and in solutions of spectro-grade CH₂Cl₂, CH₃NO₂ and CF₃CH₂OH. Electronic spectra were recorded using a Shimadzu UV-2401 PC spectrometer using MeCN, CF₃CH₂OH and CH₂Cl₂ as solvents. Mass spectrometry data were obtained using a Finnigan LCQ deca ion trap quadrupole mass spectrometer at atmospheric pressure and capillary temperature of 300 °C. The solvent used was CH₂Cl₂.

2.2. Synthesis of the complexes

2.2.1. $[Co(CNC_6H_3iPr_2-2,6)_4PPh_2CH_2CH_2PPh_2]ClO_4 \cdot 1/2 - CH_2Cl_2$ (1)

To a solution of $PPh_2(CH_2)_2PPh_2$ (293 mg (0.74 mmol) dissolved in 3.0 mL of CH_2Cl_2) was added, with continued stirring, 322 mg (0.29 mmol) of $[Co(CNC_6H_3iPr_2-2,6)_5]$ -ClO₄ as solid. The reaction mixture was then allowed to stand at room temperature for 50 min. The title compound was then precipitated out by slow addition of diethyl ether. Crystals first appeared after 10 mL of diethyl ether was added. Further 10 mL of diethyl ether was added to allow

the complete crystallization of **1**. Cooling in ice for 10 min and filtering afforded yellow powdery material (291 mg), which was dissolved in CH_2Cl_2 (2 mL) and recrystallized by addition of 10 mL of diethyl ether, yielding 235 mg of pure [Co(CNC₆H₃*i*Pr₂-2,6)₄PPh₂CH₂CH₂PPh₂]ClO₄ · 1/2-CH₂Cl₂. Yield: 61%.

2.2.2. $[{Co(CNC_6H_3iPr_2-2,6)_4}_2(\mu-PPh_2(CH_2)_3PPh_2)] - (ClO_4)_2$ (6)

[Co(CNC₆H₃*i*Pr₂-2,6)₅]ClO₄ (700 mg, 0.64 mmol) was added as solid to a stirred solution of PPh₂(CH₂)₃PPh₂ (132 mg (0.32 mmol) dissolved in 2 mL of CH₂Cl₂). The reaction mixture was then allowed to react for 1 h 45 min. Drop-wise addition of diethyl ether (20 mL) with careful sweeping of the walls of the reaction vessel with a metal spatula resulted in the formation of yellow micro crystals. The mixture was cooled in ice for 30 min, filtered and washed with 1 mL of diethyl ether. The crude product (561 mg) was dissolved in CH₂Cl₂ (2 mL) and recrystallized by slow and careful addition of diethyl ether (40 mL) yielding 316 mg of the title compound. Yield: 44%.

The compounds $[Co(CNC_6H_3iPr_2-2,6)_4PPh_2(CH_2)_3-PPh_2]CIO_4 \cdot 1CH_2Cl_2$ (2), $[Co(CNC_6H_3iPr_2-2,6)_4(PPh_2CH = CHPPh_2-trans)]CIO_4 \cdot 1CH_2Cl_2$ (3) and $[Co(CNC_6-H_3iPr_2-2,6)_4(PPh_2C_6H_4PPh_2-p)]CIO_4 \cdot 1CH_2Cl_2$ (5) were synthesized according to the synthesis of $[Co(CNC_6H_3-iPr_2-2,6)_4PPh_2CH_2CH_2PPh_2]CIO_4 \cdot 1/2CH_2Cl_2$. The synthesis of $[\{Co(CNC_6H_3iPr_2-2,6)_4\}_2(\mu-PPh_2C_6H_4PPh_2-p)](CIO_4)_2$ (7) resembles that of $[\{Co(CNC_6H_3iPr_2-2,6)_4\}_2(\mu-PPh_2C_6H_4PPh_2-p)](CIO_4)_2$. The previously reported monometallic compounds [2] of the type $[Co(CNC_6H_3Et_2-2,6)_4PPh_2-R'-PPh_2]X; X = BF_4/CIO_4, R' = -CH_2-$ (8), $-(CH_2)_2-$ (9), $-(CH_2)_3-$ (10), or trans-CH=CH- (11), and bimetallic compounds [3] of the type $[\{Co(CNC_6H_3Et_2-2,6)_4\}_2$ (μ -PPh_2-R'-PPh_2)]X_2; R' = -(CH_2)_2- (12), -C==C- (13) and p-C₆H₄- (14), have also been included in this work.

3. Results and discussion

Even though excess tertiary diphosphine ligand was used (i.e., Co:P mol ratio of 1:2.5–3.0) in synthesis of the monometallic complexes, [Co(CNC₆H₃*i*Pr₂-2,6)₅]X, analogous to $[Co(CNC_6H_3Et_2-2,6)_5]X$ [6], clearly shows preference for monosubstitution over disubstitution. This follows the trend previously observed for triarylphosphine substitution reactions in pentakis(arylisocyanide)cobalt(I) complexes. Reactions of excess PPh_3 with $[Co(CNR)_5]X$, R = Ph, C₆H₄Me-*p*, C₆H₄Me-*o*, C₆H₄F-*p*, C₆H₄Cl-*p*, C₆H₄Br-*p*, $C_6H_4I_{-p}$; clearly favoured disubstituted products, i.e., $[Co(CNR)_3(PPh_3)_2]X$; while reactions with $[Co(CNR)_5]X$, $R = 2,6-Me_2C_6H_3$, 2,4,6-Me_3C_6H_2, 2,6-Et_2C_6H_3 favoured monosubstituted products, [Co(CNR)₄PPh₃]X [6]. Preference for monosubstitution over disubstitution was seen to roughly parallel the apparent steric hindrance of the arylisocyanide: p-MeC₆H₄NC < o-Me C₆H₄NC \ll 2,4,6- $Me_3C_6H_2NC \leq 2,6-Me_2C_6H_3NC < 2,6-Et_2C_6H_3NC$ [7]. [Co-(CNC₆H₃Et₂-2,6)₅]ClO₄ also indicated monosubstitution Download English Version:

https://daneshyari.com/en/article/1308042

Download Persian Version:

https://daneshyari.com/article/1308042

Daneshyari.com