ELSEVIER

Contents lists available at ScienceDirect

Inorganica Chimica Acta

journal homepage: www.elsevier.com/locate/ica

Metal-mediated cyanamide-hydroxyguanidine coupling

Marina Ya. Demakova ^a, Dmitrii S. Bolotin ^a, Nadezhda A. Bokach ^{a,*}, Galina L. Starova ^a, Vadim Yu. Kukushkin ^{a,b,*}

^a Institute of Chemistry, Saint Petersburg State University, Universitetskiy Pr., 26, 198504 Saint Petersburg, Russian Federation

ARTICLE INFO

Article history:
Received 11 August 2014
Received in revised form 11 October 2014
Accepted 14 October 2014
Available online 4 November 2014

Keywords:
Hydroxyguanidine
Cyanamide
Zinc(II) complexes
Metal-mediated reaction
Molecular structures

ABSTRACT

Reaction of the cyanamides R_2NCN ($R = Me \ 2a$, Et 2b) with the hydroxyguanidine $OC_4H_8NC(=NOH)NH_2$ (1) in the presence of zinc halides leads to $[ZnX_2\{HN=C(NR_2)ON=C(NH_2)NC_4H_8O\}]$ derived from the Zn^{II} -mediated cyanamide–hydroxyguanidine coupling. This reaction is the first observation of interplay between any nitrile group and any hydroxyguanidine both in metal-involving and metal-free chemistry. Complexes 3a,b-5a,b rather rapidly degrade in solutions at RT, but solvates 3a,b-MeOH and 4a-MeOH are sufficiently stable in the solid state and they were characterized by IR, HRESI*-MS, solid state CP-MAS TOSS ^{13}C NMR, and X-ray crystallography (for 3a,b). Complexes 4b and 5a,b were identified in solutions by HRESI*-MS.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

One of the most efficient methods for activation of rather inert nitrile substrates toward nucleophilic addition or dipolar cycloaddition is coordination of RCN species to a metal center [1–3]. Although the nucleophilic addition of *N*-nucleophiles to metal-activated nitriles was thoroughly studied for a century, the addition of HON-type nucleophiles – for instance oximes, amidoximes, and hydroxylamines – become subject of research rather recently [2].

Besides basic interest, the coupling between nitriles and HON-systems conducted at Ni^{II} [4], Co^{II} [5], and Zn^{II} [6,7] centers has some practical implications insofar as these reactions open up facile routes to amidines [5], 1,3,5-triazapentadienes [4], phthalocyanines [8], and carboxamides [6,7], viz. the compounds exhibiting a broad range of various applications.

The current trend in the field of nitrile moiety–HON group integration includes various functionalizations of oximes (Fig. 1, A; R = Alk, Ar, H) and use of species relevant to oximes such as, for instance, amidoximes (B) [9] that in accord with IUPAC nomenclature are not derived from ketones or aldehydes and therefore do not belong to the category of oximes.

These structure modifications either leads to a substantial alteration of nucleophilicity of HON groups (that in turn, strongly affect some synthetic procedures, e.g. the synthesis of phthalocyanines [8]) or direct the coupling to unexplored directions thus giving libraries of novel species originating from the nitrile–HON integration followed by, in some instances, secondary reactions.

If reactions of ket- or aldoximes $R^1RC=NOH$ (**A**) and amidoximes $R^1C(NR_2)=NOH$ (**B**) with nitriles RCN were studied in both organic [10] and coordination chemistry [2], nothing is known on interplay between hydroxyguanidines (R_2N)₂C=NOH (**C**) with any of CN groups. In this work, we report on the first observation of such reaction that includes zinc(II)-mediated coupling between dialkylcyanamides and a hydroxyguanidine.

2. Experimental

2.1. Instrumentation

Melting points were measured on a Stuart SMP30 apparatus in capillaries and are not corrected. Microanalyses were carried out on a Euro EA3028-HT instrument. Electrospray ionization mass-spectra were obtained on a Bruker micrOTOF spectrometer equipped with an electrospray ionization (ESI) source. The instrument was operated both in positive and in negative ion mode using a m/z range 50–3000. The capillary voltage of the ion source was set at $-4500 \, \text{V}$ (ESI*-MS) and the capillary exit at $\pm (70-150) \, \text{V}$. The nebulizer gas flow was 0.4 bar and the drying gas flow 4.0 L/

^b Institute of Macromolecular Compounds of Russian Academy of Sciences, V.O. Bolshoi Pr. 31, 199004 Saint Petersburg, Russian Federation

^{*} Corresponding authors at: Institute of Macromolecular Compounds of Russian Academy of Sciences, V.O. Bolshoi Pr. 31, 199004 Saint Petersburg, Russian Federation (V.Yu. Kukushkin).

 $[\]textit{E-mail addresses: } n.bokach@spbu.ru (N.A. Bokach), kukushkin@VK2100.spb.edu (V.Yu. Kukushkin).$

min. For ESI, complexes were dissolved in MeOH. In the isotopic pattern, the most intensive peak is reported. The solid state CP-MAS TOSS ^{13}C NMR spectra were measured on Bruker Avance III WB 400 with magic angle spinning at 10 kHz frequencies. Infrared spectra $(4000\text{-}400\,\text{cm}^{-1})$ were recorded on a Shimadzu IR Prestige-21 instrument in KBr pellets.

2.2. Materials

Solvents and the dialkylcyanamides were obtained from commercial sources and used as received. The N-morpholine-carbamidoxime (1) and also $R_2NC(=NOH)NH_2$ ($R_2 = C_5H_{10}$, Ph_2) were synthesized according to the literature methods [11].

2.3. X-ray structure determinations

Single crystals of 3a EtOH and 3b MeOH were grown from an EtOH/ethyl acetate 1:1 (v/v) mixture and MeOH, respectively. A crystal suitable for X-ray diffraction was mounted on Xcalibur, Eos diffractometer and it was kept at 100(2) K during data collection. Using OLEX2 [12], the structure was solved with the Superflip [13] structure solution program using Charge Flipping and refined with the SHELXL [14] refinement package using Least Squares minimization. Crystal data for **3a**·EtOH: $C_{10}H_{23}N_5O_3Cl_2Zn$, M = 395.59, triclinic, a = 8.4794(3) Åb = 8.6365(3) Å,c = 12.5146(4) Å, $\alpha = 95.846(3), \quad \beta = 107.638(3), \quad \gamma = 106.815(3)^{\circ}, \quad V = 817.80(5) \text{ Å}^3,$ T = 100(2), space group $P\bar{1}$ (No. 2), Z = 2, μ (Cu Kα) = 5.248, 16944 reflections measured, 3240 unique (R_{int} = 0.0917), which were used in all calculations. The final wR_2 was 0.1721 (all data) and R_1 was 0.0596 (>2 $\sigma(I)$). Crystal data for **3b**·MeOH: $C_{11}H_{25}N_5Cl_2O_3Zn$, M = 788.19. triclinic. a = 8.5625(7) Å,b = 9.1343(11) Å, $c = 12.3374(14) \text{ Å}, \quad \alpha = 110.392(11)^{\circ}, \quad \beta = 97.707(8), \quad \gamma = 98.570(8),$ $V = 876.17(16) \text{ Å}^3$, T = 100(2), space group $P\bar{1}$ (No. 2), Z = 1, μ (Mo 7461 reflections measured, 3753 unique $(R_{\rm int} = 0.0964)$, which were used in all calculations. The final wR_2 was 0.1769 (all data) and R_1 was 0.0834 (>2 $\sigma(I)$).

2.4. Synthetic work

Powder of $OC_4H_8NC(=NOH)NH_2$ (0.55 mmol) was added to a stirred solution of ZnX_2 (X = Cl, Br, I; 0.55 mmol) in MeOH (5 mL), whereupon $NCNR_2$ (0.66 mmol for R = Me; 0.83 mmol for R = Et) was added to the mixture. Colorless powder was released after 2 min (R = Me), it was separated by centrifugation, washed with CH_2Cl_2 (two 2-mL portions) and dried in air at RT overnight. For system with R = Et 8-fold excess of EtOAc was added to the reaction mixture after 2 min, whereupon the formed colorless precipitate was treated as described for R = Me. Yields 73% ($\bf 3a\cdot MeOH$), 69% ($\bf 3b\cdot MeOH$), and 67% ($\bf 4a\cdot MeOH$).

2.4.1. $[ZnCl_2\{HN=C(NMe_2)ON=C(NH_2)NC_4H_8O\}]$ -MeOH (**3a**·MeOH)

M.p. 153 °C (dec.). *Anal.* Calc. for $C_9H_{21}N_5Cl_2O_3Zn$: C, 28.18; H, 5.52; N, 18.26. Found: C, 28.45; H, 5.59; N, 19.01%. HRESI*-MS (MeOH, m/z): 216.1452 (calc. 216.1461) $[C_8H_{17}N_5O_2+H]^*$ ($[L+H]^*$), 314.0343 (calc. 314.0331) $[C_9H_{21}N_5ClO_3Zn]^*$ ($[M-Cl]^*$), 667.0332

Fig. 1. Structural types of HON-systems for the coupling (R = Alk, Ar or H; $R^1 = Alk$, Ar): (A) – oximes, (B) – amidoximes, (C) – hydroxyguanidines.

(calc. 667.0332) [$C_{18}H_{34}N_{10}Cl_3O_4Zn_2$]* ([2M–CI]*). IR (KBr, selected bands, cm⁻¹): 3419(vs), 3331(m), 3231(m), 3182(m) [ν (N–H)]; 2961(w), 2919(w), 2899(vw), 2852(vw) [ν (C–H)]; 1619(s) [ν (C=N)]; 1558(w) [δ (N–H), ν (C=N)]; 552(m) [δ (C–H)]. ¹³C NMR (CP-MASS TOSS, δ): 36.84 (Me¹ and Me²), 49.31 (CH₂–N), 64.65 (CH₂–O), 160.54 (C_1 and C_4); the signal of MeOH (46.21 ppm) was also detected.

2.4.2. $[ZnCl_2\{HN=C(NEt_2)ON=C(NH_2)NC_4H_8O\}]\cdot MeOH$ (**3b**·MeOH)

M.p. 149 °C (dec.). *Anal.* Calc. for $C_{11}H_{25}N_5Cl_2O_3Zn$: C, 32.10; H, 6.12; N, 17.01. Found: C, 32.45; H, 6.09; N, 17.23%. HRESI⁺-MS (MeOH, m/z): 244.1776 (calc. 244.1774) [$C_{10}H_{21}N_5O_2+H$]⁺ ([L+H]⁺), 342.0684 (calc. 342.0686) [$C_{10}H_{21}N_5ClO_2Zn$]⁺ ([M-Cl]⁺), 725.1148 (calc. 725.1142) [$C_{20}H_{42}N_{10}Cl_3O_4Zn_2$]⁺ ([2M-Cl]⁺). IR (KBr, selected bands, cm⁻¹): 3429(vs), 3332(m), 3226(m) [ν (N-H)]; 2975(w), 2901(w), 2861(vw) [ν (C-H)]; 1625(s) [ν (C=N)]; 1560(w) [δ (N-H), ν (C=N)]; 552(m) [δ (C-H)]. ¹³C NMR (CP-MASS TOSS, δ): 15.31 (Me¹ and Me²), 42.61 (CH½ and CH½), 47.79 (CH2-N), 66.50 (CH2-O), 161.67 (C₁ and C₄); the signal of MeOH (46.72 ppm) was also detected.

2.4.3. $[ZnBr_2\{HN=C(NMe_2)ON=C(NH_2)NC_4H_8O\}]\cdot MeOH$ (**4a**·MeOH)

M.p. 151 °C (dec.). *Anal.* Calc. for $C_9H_{21}N_5Br_2O_3Zn$: C, 22.88; H, 4.48; N, 14.82. Found: C, 22.65; H, 4.74; N, 15.01%. HRESI⁺-MS (MeOH, m/z): 216.1454 (calc. 216.1461) $[C_8H_{17}N_5O_2+H]^+$ ($[L+H]^+$), 389.0225 (calc. 389.0221) $[C_9H_{21}N_5BrO_3Zn]^+$ ($[M-Br]^+$), 858.9615 (calc. 858.9611) $[C_{18}H_{34}N_{10}Br_3O_4Zn_2]^+$ ($[2M-Br]^+$). IR (KBr, selected bands, cm⁻¹): 3514(vs), 3439(m), 3336(m), 3230(m) $[\nu(N-H)]$; 2967(w), 2917(w), 2896(vw), 2858(vw) $[\nu(C-H)]$; 1628(s) $[\nu(C=N)]$; 1560(w) $[\delta(N-H), \nu(C=N)]$; 551(m) $[\delta(C-H)]$. 13 C NMR (CP-MASS TOSS, δ): 37.93 (Me¹ and Me²), 47.68 (CH₂-N), 67.73 (CH₂-O), 160.00 and 161.56 (C₁ and C₄); the signal of MeOH (46.13 ppm) was also detected.

Complexes **4b** and **5a,b** were detected in MeOH in solutions by HRESI $^+$ -MS. **4b**, m/z: 244.1766 (calc. 244.1768) $[C_{10}H_{21}N_5O_2+H]^+$ ([L+H] $^+$), 388.6810 (calc. 388.6814) $[C_{10}H_{21}N_5BrO_2Zn]^+$ ([M-Br] $^+$). **5a**, m/z: 216.1455 (calc. 216.1455) $[C_8H_{17}N_5O_2+H]^+$ ([L+H] $^+$), 405.9707 (calc. 405.9712) $[C_9H_{21}N_5IO_3Zn]^+$ ([M-I] $^+$). **5b**, m/z: 244.1765 (calc. 244.1768) $[C_{10}H_{21}N_5O_2+H]^+$ ([L+H] $^+$), 434.0023 (calc. 434.0026) $[C_{10}H_{21}N_5IO_2Zn]^+$ ([M-I] $^+$).

3. Results and discussion

In our work, we observed the reaction between the dialkylcyanamides R_2NCN ($R = Me \ 2a$, Et 2b) and a hydroxyguanidine, viz. N-morpholinecarbamidoxime (1) [11] in the presence of ZnX_2 (X-Cl, Br, I), which leads to ZnC(II) chelates Za, Zn (Zn) (Zn).

Scheme 1. The observed coupling.

Download English Version:

https://daneshyari.com/en/article/1309272

Download Persian Version:

https://daneshyari.com/article/1309272

<u>Daneshyari.com</u>