ELSEVIER

Contents lists available at ScienceDirect

Inorganica Chimica Acta

journal homepage: www.elsevier.com/locate/ica

Dihydroxylation of alkenes using a Tp-osmium complex

Ahmad Dehestani, Adam Wu, Rebecca Hayoun, Werner Kaminsky¹, James M. Mayer*

Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700, USA

ARTICLE INFO

Article history:
Received 5 February 2009
Received in revised form 23 April 2009
Accepted 1 May 2009
Available online 10 May 2009

Dedicated to Jerry Trofimenko for his inspiration and enthusiasm, and for the Tp ligands.

Keywords:
Osmium
Oxidation
Hydroxide
Alkene
Dihydroxylation

ABSTRACT

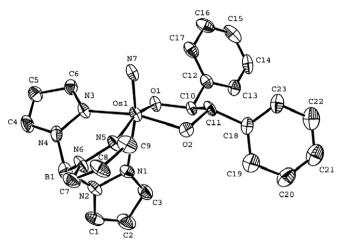
The reaction of $TpOs^{VI}(N)(OH)_2$ (1) [Tp = hydrotris(1-pyrazolyl)borate], m-chloroperbenzoic acid (m-CPBA), and trans-stilbene in C_6H_6 at room temperature gives the diolate complex $TpOs^{VI}(N)(trans-O_2C_2H_2Ph_2)$ (2) and m-chlorobenzoic acid (m-CBA). The trans configuration of the stilbene is retained in the diolate complex as shown in the crystal structure of 2. Complex 2 is hydrolyzed by 2 equivalents of aqueous HCl in CD_2Cl_2 to give rac-hydrobenzoin, the product of cis-dihydroxylation, and $TpOs^{VI}(N)Cl_2$. cis-Stilbene, styrene, cyclohexene, trans-dimethyl fumarate, trans-methyl cinnamate, and trans-dimethylamino-4'-nitrostilbene are also converted to their corresponding free diol products by reaction with 1 and m-CPBA in CD_2Cl_2 , and then aqueous HCl. In aqueous HBF4, oxidation of the water-soluble ole-fin, 4-styrenesulfonic acid, by 1 is modestly catalytic (15 turnovers in 3 h) with excess PbO2 as the oxidant. Under non-acidic conditions, the diolate complexes are inert and catalysis is precluded. Mechanistic experiments implicate an oxidizing osmium complex as an intermediate in these reactions.

1. Introduction

Metal-catalyzed olefin oxidations are important reactions, from the chiral cis-dihydroxylation of olefins by ligated osmium tetroxide, OsVIIIO4(L) [1], to epoxidations with hydrogen peroxide over titanium silicalite TS1 [2] and many other processes [3]. While many metal systems perform various kinds of olefin oxidations, there are few complexes that accomplish dihydroxylation [4]. The classical examples of dihydroxylation are by osmium tetroxide, permanganate, and related simple polyoxo compounds [1,5]. In recent years, interesting dihydroxylating iron and manganese systems have also been developed [6]. For the reaction of OsO₄(L) with alkenes to give OsVI diolates, experimental and theoretical studies indicate a concerted [3+2] mechanism involving a pericyclic direct addition of the alkene to an O=Os=O unit [7-10]. The Os^{VI} diolate complex is then hydrolyzed to release the diol product and form an Os^{VI} hydroxide species such as osmate, Os(O)₂(OH)₄²⁻. Oxidation of osmate by a terminal oxidant regenerates OsVIII and completes the catalytic cycle.

We have been studying the oxidation chemistry of osmium compounds supported by a hydrotris(1-pyrazolyl)borate (Tp) ligand [11–16]. We have found that Tp is a good supporting ligand for oxidizing complexes despite the presence of the borohydride functionality [14,15]. As part of these studies, we reported the

Tp–Os^{VI} complex TpOs^{VI}(N)(OH)₂ (1) [16] that has a *cis*-bis-hydroxide motif resembling osmate. Complex 1 is prepared from the dichloride complex TpOs^{VI}(N)Cl₂ [11], by initial chloride metathesis to acetate using AgOAc [12]. This is a rare example of a reaction of TpOs^{VI}(N)Cl₂ that does not occur at the electrophilic nitrido ligand [11,12,17]. Further reaction of TpOs^{VI}(N)(OAc)₂ with NaOH affords the bis-hydroxide complex 1, by direct substitution of the acetates with hydroxides [16]. Complex 1 was prepared with the goal of oxidizing it to an Os^{VIII} species such as "TpOs(N)(O)₂". This paper presents our exploration of the oxidation chemistry of 1, in particular the oxidations of olefins with 1 and m-chloroperbenzoic acid (m-CPBA) to give osmium(VI) diolate complexes. This is a new example of a system that accomplishes *cis*-dihydroxylation of alkenes.


2. Results and discussion

2.1. Synthesis and characterization of TpOs^{VI}(N)(trans- $O_2C_2H_2Ph_2$) (2)

Stirring TpOs^{VI}(N)(OH)₂ (1) with 1 equivalent each of m-chloroperbenzoic acid (m-CPBA) and trans-stilbene in C₆H₆ at room temperature for 5 min yields m-chlorobenzoic acid (m-CBA) and the orange-red diolate complex TpOs^{VI}(N)(trans-O₂C₂H₂Ph₂) (2) (Eq. (1)). Complex **2** is isolated in 95% yield using silica gel chromatography. trans-stilbene oxidation occurs with retention of the trans configuration as revealed by the trans1 H NMR spectrum of **2**, which shows two different methinyl diolate protons (trans5.40, 5.48 in

^{*} Corresponding author. Tel: +1 206 543 2083; fax: +1 206 685 8665. E-mail address: mayer@chem.washington.edu (J.M. Mayer).

¹ UW Chemistry crystallographic facility.

Fig. 1. ORTEP of $TpOs^{VI}(N)(trans-O_2C_2H_2Ph_2)$ (2). Thermal ellipsoids are drawn at 30% probability level, and hydrogen atoms are omitted for clarity.

 CD_2Cl_2) and nine pyrazole resonances (δ 6.11–8.19), indicating that **2** has C_1 symmetry. This is in contrast with the related complexes $TpOs^{VI}(N)X_2$ (X = Cl, OAc, or OH), which show C_s symmetry, with six pyrazole peaks in a 2:2:2:1:1:1 ratio in the ¹H NMR [11,12,14]. It should be noted that under the conditions of reaction 1, the oxidation of *trans*-stilbene by *m*-CPBA alone is negligible (see below).

$$\begin{array}{c|c} & & & & \\ & &$$

Crystals of **2** were grown from CH_2CI_2 /hexanes solutions, and the structure was solved by direct methods. The ORTEP of **2** is shown in Fig. 1, and the metrical parameters are shown in Table 1 (see Section 4.3 for selected crystallographic data). The ORTEP of **2** shows a distorted octahedral molecule with all of the ligands bent away from the nitrido ligand N(7), typical of complexes with a single nitrido or oxo group [18]. The Os \equiv N distance of 1.680(8) Å is within the 1.602(20)–1.70(2) Å range of such bond lengths in TpOs^{VI}(N)X₂ complexes (X = Cl, Me, Ph, O₂CCF₃, NO₃, or OH) [11a,12,14]. The Os=O distances in **2** (1.940(6) and 1.946(6) Å) are similar to those of **1** (1.956(7) and 1.941(8) Å) [14].

2.2. The reaction of TpOs^{VI}(N)(trans- $O_2C_2H_2Ph_2$) (2) with HCl

The reaction of ${\bf 2}$ with 2 equivalents of aqueous HCl in CD_2Cl_2 yields the Os^{VI} nitrido-dichloride complex $TpOs^{VI}(N)Cl_2$ [11], and

Scheme 1.

rac-hydrobenzoin (Eq. (2)), as observed by ¹H NMR. Rac-hydrobenzoin is the product of cis-dihydroxylation of trans-stilbene; its formation was confirmed by comparison of the NMR spectra with those of an authentic sample. Removal of the diolate from the osmium center requires strongly acidic conditions; no reaction is observed between **2** and H₂O in the absence of acid. Similar behavior has been observed for other TpOs(N)(OR)₂ compounds. The bisacetate complex TpOs^{VI}(N)(OAc)₂ reacts with acids HX in which X is a coordinating anion to give TpOs^{VI}(N)X₂ [12]. The hydroxide and diolate complexes appear to react similarly. Thus catalytic oxidations could not be simply achieved by adding H₂O (Scheme 1); see Section 2.4.

2.3. Reactions with other olefins

The reaction of **1** with m-CPBA and other olefins also forms their corresponding diolate complexes. For example, reacting **1** with 1 equivalent each of m-CPBA and cis-stilbene in CD₂Cl₂ gives TpOs^{VI}(N)(cis-O₂C₂H₂Ph₂) (**3**). ¹H NMR spectra of the reaction show that **3** is a roughly 1:1 mixture of two diastereotopic diolate products. Twelve pyrazole resonances are observed, in two sets of the characteristic peaks for C_s symmetry of the Tp compounds: 2 doublets + 1 triplet each of intensity two, and 2 doublets + 1 triplet of intensity one. The two isomers each have the phenyl

 $\label{eq:table_1} \textbf{Table 1} \\ \textbf{Selected bond lengths and angles for TpOs}^{VI}(N) (\textit{trans-}O_2C_2H_2Ph_2) \ \textbf{(2)}. \\$

Bond	Length (Å) or Angle (°)	Bond	Length (Å) or Angle (°)
Os(1)-N(1)	2.296(8)	Os(1)-O(1)	1.946(6)
Os(1)-N(3)	2.084(8)	Os(1)-O(2)	1.940(6)
Os(1)-N(5)	2.080(8)	Os(1)=N(7)	1.680(8)
N(3)-Os(1)-N(1)	78.2(3)	O(1)-Os(1)-N(1)	85.6(3)
N(5)-Os(1)-N(1)	78.2(3)	O(2)-Os(1)-N(1)	86.1(3)
N(3)-Os(1)-N(5)	91.2(3)	O(1)-Os(1)-N(3)	89.7(3)
N(1)-Os(1)-N(7)	166.1(3)	O(2)-Os(1)-N(3)	162.9(3)
N(3)-Os(1)-N(7)	93.3(3)	O(1)-Os(1)-N(5)	163.2(3)
N(5)-Os(1)-N(7)	91.2(3)	O(2)-Os(1)-N(5)	92.1(3)
O(1)-Os(1)-O(2)	82.3(3)	O(1)-Os(1)-N(7)	105.5(3)
		O(2)-Os(1)-N(7)	103.4(3)

Download English Version:

https://daneshyari.com/en/article/1309572

Download Persian Version:

https://daneshyari.com/article/1309572

<u>Daneshyari.com</u>