Inorganica Chimica Acta 419 (2014) 55-58

Contents lists available at ScienceDirect

Inorganica Chimica Acta

journal homepage: www.elsevier.com/locate/ica

Syntheses and structures of two rhenium–sulfur–copper cubane-like cluster compounds with the bridging sulfate anions

Inorganica Chimica Acta

Hua-Tian Shi^a, Chao Xu^a, Ai-Quan Jia^a, Xiang-Hong Huang^c, Qian-Feng Zhang^{a,b,*}

^a Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, Anhui 243002, PR China

^b Coordination Chemistry Institute, Nanjing University, Nanjing 210093, PR China

^c College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, PR China

ARTICLE INFO

Article history: Received 10 November 2013 Received in revised form 5 March 2014 Accepted 14 April 2014 Available online 30 April 2014

Keywords: Heterobimetallic compound Rhenium-sulfur-copper cluster Thiometalate Sulfate anion Crystal structure

ABSTRACT

Treatment of [Et₄N][ReS₄] with three equivalents of CuSO₄·5H₂O in the presence of three equivalents PPh₃ gave a tetranuclear cubane-like cluster compound [(μ_3 -SO₄)(μ_3 -ReS₄)Cu₃(PPh₃)₃]·2dmf (1·2dmf) in which a ReS₄Cu₃ core is capped by a μ_3 -SO₄⁻ moiety, leaving a S=O double bond. A similar reaction of [Et₄N][ReS₄] with three equivalents of CuSO₄·5H₂O in the presence of two equivalents of PPh₃ gave rise to isolation of a neutral one-dimensional polymeric cubane-like cluster compound [(μ_4 -SO₄)(μ_3 -ReOS₃)-Cu₃(PPh₃)₂]_n (**2**) in which the ReOS₃Cu₃ cores are bridged by the μ_4 -SO₄⁻ anions. Both cluster compounds were characterized by single-crystal X-ray diffraction along with the spectroscopic methods.

© 2014 Published by Elsevier B.V.

1. Introduction

Heterobimetallic cubane-like cluster compounds containing central $[MS_4]^{n-}$ (M = Mo, W, n = 2; M = V, n = 3) cores and copper atoms have attached much interest because of their postulated implication in biological systems [1], their ability to serve as precursors of catalysts [2,3] and their potential application in nonlinear optical characteristics [4–10]. There are guite few examples of rhenium-related species based upon the $[ReS_4]^-$ central core. Actually, the [ReS₄]⁻ ligand was expected to demonstrate a significantly different coordination behavior compared with the $[MS_4]^{2-}$ (M = Mo, W) anions which have a higher charge density [11]. This is even more remarkable in that, owing to the strongly reducing S^{2-} ligands at the Re^{VII} center, the [ReS₄]⁻ ligand should exhibit interesting coordination chemistry [12]. Müller and others have studied interactions of [ReS₄]⁻ with copper(I) halides and reported successively a series of rhenium-sulfur-copper cluster anions including binuclear linear complex [(ReO₂S₂)CuI]⁻ [13], tetranuclear cubane-like clusters [(ReOS₃)Cu₃Cl₄]²⁻ [11] and [(ReS₄)Cu₃₋ X_4]²⁻ (X = Cl, I)[14], tetranuclear butterfly cluster $[(\text{ReS}_4)\text{Cu}_3\text{Cl}_5]^{3-}$ [14], hexanuclear double cubane-like clusters [(ReS₄)Cu₅X₇]³⁻ (X = Cl, Br) [4,15], one-dimensional polymeric clusters [(ReS₄)Cu₃I₄]_n²ⁿ⁻, [(ReS₄)Cu₄I₅]_n²ⁿ⁻ and [(ReS₄)Cu₅I₆]_n²ⁿ⁻ [16,17], and three-dimensional polymeric clusters [(ReS₄)Cu₂(NCS)₂]_n²ⁿ⁻, [(ReS₄)Cu₃(NCS)₄]_n²ⁿ⁻ and [(ReS₄)₂Cu₂(NCS)₂]_n²ⁿ⁻ [5]. We report herein the syntheses and molecular structures of neutral cubane-like cluster compound [(μ_3 -SO₄)(μ_3 -ReS₄)Cu₃(PPh₃)₃]-2dmf (1-2dmf) and neutral one-dimensional polymeric cubane-like cluster compound [(μ_4 -SO₄)(μ_3 -ReOS₃)Cu₃(PPh₃)₂]_n (**2**) with the bridging sulfate anions and triphenyl-phosphine ligands.

2. Experimental

2.1. Materials and measurements

All syntheses were performed in oven-dried glassware under a purified nitrogen atmosphere using standard Schlenk techniques. The solvents were purified by conventional methods and degassed prior to use. [Et₄N][ReS₄] was prepared by the literature method [18]. Electronic absorption spectra were obtained on a Shimadzu UV-3000 spectrophotometer. Infrared spectra were recorded on a Digilab FTS-40 spectrophotometer with use of pressed KBr pellets. Positive FAB mass spectra were recorded on a Finnigan TSQ 7000 spectrometer. NMR spectra were recorded on a Bruker ALX 300 spectrometer operating at 300 and 121.5 MHz for ¹H and ³¹P, respectively, and chemical shift (δ , ppm) were reported with refer-

^{*} Corresponding author at: Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, Anhui 243002, PR China. Tel./fax: +86 555 2312041.

E-mail address: zhangqf@ahut.edu.cn (Q.-F. Zhang).

ence to SiMe₄ (1H) and H_3PO_4 (³¹P). All elemental analyses were carried out using a Perkin-Elmer 2400 CHN analyzer.

2.2. Preparation of $[(\mu_3-SO_4)(\mu_3-ReS_4)Cu_3(PPh_3)_3]$ ·2dmf (**1**·2dmf)

A solution of $[Et_4N][ReS_4]$ (67 mg, 0.15 mmol) in DMF (10 mL) was added to a solution of CuSO₄·5H₂O (112 mg, 0.45 mmol) and PPh₃ (118 mg, 0.45 mmol) in MeOH-CH₂Cl₂ (1:1) (10 mL). The mixture was stirred at room temperature for 2 h, during which time the color gradually changed from purple to purple-red. A little precipitate was removed by filtration, and a clear filtrate was obtained. The purple-red filtrate was carefully layered with *i*-PrOH (15 mL). Purple-red needle crystals of $[(\mu_3-SO_4)(\mu_3-ReS_4)Cu_3(PPh_3)_3] \cdot 2dmf$ (1.2dmf) were obtained in three days. The product was washed with i-PrOH and Et₂O and dried under vacuum. Yield: 90 mg (39%). Anal. Calc. for C54H45O4P3S5Cu3Re·2(C3H7NO): C, 46.97; H, 3.88; N, 1.83. Found: C, 46.33; H, 3.85; N, 1.81%. UV–Vis (DMF, λ_{max} / nm, $10^{-3}\epsilon/M^{-1}$ cm⁻¹): 266 (11.9), 295 (8.57), 437 (1.26). IR (KBr disc, cm⁻¹): v(C-H) 3057 (m), v(C=O) 1664 (s), v(S=O) 1294 (s) and 1263 (s), v(P-C) 1076 (s), v(C-S) 693 (s), v(Re-S) 522 (m), v(Re-S) 451 (w), v(Cu-P) 445 (w) and 436 (w). ¹H NMR (DMSOd₆, ppm): δ 2.97 (s, 6H, Me₂NCHO), 2.88 (s, 6H, Me₂NCHO), 7.12-7.59 (m, 45H, Ph), 8.01 (s, 2H, CHO). ³¹P NMR (DMSO- d_6 , ppm): δ 4.29 (s). MS (FAB): *m*/*z* 1388 (M⁺), 1292 (M⁺-SO₄).

2.3. Preparation of $[(\mu_4-SO_4)(\mu_3-ReOS_3)Cu_3(PPh_3)_2]_n$ (2)

A solution of [Et₄N][ReS₄] (67 mg, 0.15 mmol) in DMF (10 mL) was added to a solution of CuSO₄·5H₂O (112 mg, 0.45 mmol) and PPh₃ (79 mg, 0.30 mmol) in MeOH-CH₂Cl₂ (1:1) (10 mL). The mixture was stirred at room temperature for 1 h. A little precipitate was removed by filtration, and a clear filtrate was obtained. The red filtrate was carefully layered with Et₂O (10 mL). Purple-red block crystals of $[(\mu_4-SO_4)(\mu_3-ReOS_3)Cu_3(PPh_3)_2]_n$ (2) were obtained in a week. The product was washed with Et₂O and dried under vacuum. Yield: 53 mg (32%). Anal. Calc. for C₃₆H₃₀O₅P₂S₄Cu₃Re: C, 38.96; H, 2.72. Found: C, 38.87; H, 2.74%. UV–Vis (DMF, λ_{max}/nm , $10^{-3}\varepsilon/M^{-1}$ cm⁻¹): 267 (12.4), 291 (9.38), 432 (2.01). IR (KBr disc, cm⁻¹): v(S=O) 1272 (s), v(P-C) 1073 (s), v(Re=O) 935 (s), v(C-S) 689 (s), v(Re–S) 446 (w), v(Cu–P) 449 (w) and 437 (w). ¹H NMR (DMSO-*d*₆, ppm): δ 6.85–7.38 (m, 30H, Ph). ³¹P NMR (DMSO-d₆, ppm): δ 5.42 (s). MS (FAB): *m*/*z* 1109 (M⁺), 1013 (M⁺–SO₄).

2.4. X-ray crystallography

Crystallographic data and experimental details for $[(\mu_3-SO_4)$ $(\mu_3-\text{ReS}_4)\text{Cu}_3(\text{PPh}_3)_3]\cdot 2\text{dmf}$ and $[(\mu_4-\text{SO}_4)(\mu_3-\text{ReOS}_3)\text{Cu}_3(\text{PPh}_3)_2]_n$ are summarized in Table 1. Intensity data were collected on a Bruker SMART APEX 2000 CCD diffractometer using graphitemonochromated Mo K α radiation (λ = 0.71073 Å) at 293(2) K. The collected frames were processed with the software SAINT [19]. The data was corrected for absorption using the program sADABS [20]. Structures were solved by the direct methods and refined by fullmatrix least-squares on F^2 using the SHELXTL software package [21,22]. The metal, phosphorous, sulfur, selenium, and chloride atoms in the complexes were refined anisotropically. The positions of all hydrogen atoms were generated geometrically (C_{sp3} -H = 0.96 and C_{sp2} -H = 0.93 Å), assigned isotropic thermal parameters, and allowed to ride on their respective parent carbon or nitrogen atoms before the final cycle of least-squares refinement. The largest peak in the final difference map had height of 1.978 e $Å^{-3}$ in **1**-2dmf is in the vicinity of the rhenium atom. Atomic coordinates, complete bond distances and angles, and anisotropic thermal parameters of all non-hydrogen atoms for both two cluster compounds are available as supplementary materials.

Table 1

Crystallgraphic data and experimental details for [(µ3-SO4)(µ3-ReS4)Cu3(PPh3)3]·2dmf (1.2 dmf) and $[(\mu_4-SO_4)(\mu_3-\text{ReOS}_3)Cu_3(\text{PPh}_3)_2]_n$ (2).

	1.2dmf	2
Formula	C ₆₀ H ₅₉ N ₂ O ₆ P ₃ S ₅ Cu ₃ Re	C36H30O5P2S4Cu3Re
Formula weight	1534.12	1109.60
a (Å)	19.263(11)	16.213(6)
b (Å)	12.982(7)	10.296(4)
<i>c</i> (Å)	25.776(15)	24.666(9)
α (°)	90	90
β(°)	92.496(11)	10.109(6)
γ (°)	90	90
V (Å ³)	6440(6)	4053(3)
Ζ	4	4
Crystal system	monoclinic	monoclinic
Space group	$P2_1/n$	$P2_1/c$
$ ho_{ m calc} (m gcm^{-3})$	3.136	1.818
No. of reflections	18077	24674
No. of independent reflections	13023	9318
Goodness-of-fit (GoF) ^a	0.952	0.980
$R_1^{b}, w R_2^{c} (I > 2\sigma(I))$	0.0796, 0.1309	0.0458, 0.0786
R_1 , wR_2 (all data)	0.0945, 0.1653	0.0666, 0.0909
Parameters	715	460

^a GoF = $[\Sigma w(|F_o| - |F_c|)^2/(N_{obs} - N_{param})]^{1/2}$.

^b $R_1 = \Sigma(|F_0| - |F_c|)/\Sigma|F_0|.$ ^c $wR_2 = [\Sigma w^2(|F_0| - |F_c|)^2/\Sigma w^2 F_0]^2]^{1/2}.$

3. Results and discussion

Interaction of [Et₄N][ReS₄] with CuSO₄·5H₂O and PPh₃ in a 1:3:3 ratio in the mixed DMF/MeOH/CH₂Cl₂ solvents led to the isolation of the typical tetranuclear cubane-like cluster compound $[(\mu_3-SO_4)(\mu_3-ReS_4)Cu_3(PPh_3)_3] \cdot 2dmf(1 \cdot 2dmf)$ as purple-red needle crystals in 39% yield, while the similar reaction of [Et₄N][ReS₄] with CuSO₄·5H₂O and PPh₃ in a 1:3:2 ratio gave the polymeric tetranuclear cubane-like cluster compound $[(\mu_4-SO_4)(\mu_3-ReOS_3) Cu_3(PPh_3)_2]_n$ (2) as purple-red block crystals in 32% yield. Obviously, treatment of $CuSO_4 \cdot 5H_2O$ with σ -donor ligand PPh₃ in MeOH-CH₂Cl₂ (1:1) solution resulted in the blue solution to gradually turn to the colorless solution, indicating that the Cu(II) ion was reduced to the Cu(I) ion. The resulting Cu(I)-specie may effectively bind to three ReS₂ edges of the [ReS₄]⁻ anion, leading to the formation of the cubane-like skeleton core $\{\text{ReS}_3\text{Cu}_3(\text{SO}_4)\}^{2+}$, in which the SO_4^{2-} fragment ligates three Cu(I) ions via three oxygen atoms. It is not difficult to understand that the single cubane-like cluster compound **1** formed due to three equivalents of PPh₃ ligands bound to three copper atoms in the cubane-like skeleton core. Moreover, the following self-assembly reaction of the $[(\mu_3-SO_4)(\mu_3-ReS_4)Cu_3]$ intermediate may occur in the present system when two equivalents of PPh₃ ligands was used only: two copper atoms were terminately bonded by two PPh₃ ligands and the leaving one copper atom was coordinated by the oxygen atom of the terminal S=0 moiety in the μ_3 -SO₄²⁻ [23], resulting in formation of polymeric cluster compound 2 with a one-dimensional zigzig chain. It is believed that the Re=O group in 2 formed due to the hydrolysis of the terminal Re=S group attached to the cubane-like core during the recrytallization. Hydrolysis of Re=S groups to give Re=O groups have been found for analogous thiomolybdate and thiotungstate systems previously [24,25].

The main features in the electronic absorption spectra in DMF solution at room temperature are structured bands at 266-268 nm, to which aromatic $\pi \rightarrow \pi^*$ transitions make the major contribution. The relatively low energy absorption bands at 290-295 nm which are probably assigned to $\pi(S^{2-}) \rightarrow d(\text{Re}^{\text{VII}})$ charge transfer arising from the [ReS₄]⁻ or [ReOS₃]⁻ moiety [26]. Absorption spectrum of the polymeric cluster compound 2 in DMF solution is shown in Fig. 1(up). The luminescent properties of the polymeric cluster compound 2 in the solid state have been Download English Version:

https://daneshyari.com/en/article/1309603

Download Persian Version:

https://daneshyari.com/article/1309603

Daneshyari.com