Reactions of phenylacetylene and p-tolylacetylene with a five-coordinate Ru ${ }^{\text {II }}$ complex

Erin S.F. Ma, Brian O. Patrick, Brian R. James*
Department of Chemistry, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada

A R T I C L E I N F O

Article history:

Received 19 July 2013
Received in revised form 30 August 2013
Accepted 3 September 2013
Available online 12 September 2013

Keywords:

Ruthenium complexes
$\mathrm{P}-\mathrm{N}$ ligand
${ }^{31}$ P NMR data
Acetylenes
Vinylidene structure

Abstract

The acetylenes $\mathrm{R}^{\prime} \mathrm{C} \equiv \mathrm{CH}$ react with the known 5-coordinate, green, square-pyramidal trans- $\mathrm{RuCl}_{2}-$ $(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)$ complexes ($\mathrm{R}^{\prime}, \mathrm{R}=\mathrm{Ph}, p$-tolyl; $\mathrm{P}-\mathrm{N}=0$-diphenylphosphino- N, N^{\prime}-dimethylaniline) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution to form the orange vinylidene derivatives, cis $-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)\left(\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{R}^{\prime}\right)$ (2); this is a well-known type reaction, but is the first to involve a bidentate $\mathrm{P}-\mathrm{N}$ ligand, and convert a 5 -coordinate precursor to a 6 -coordinate product. Crystal structure and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data for the $\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{Ph}$ complex (2a), extend significantly an established linear correlation between the $\mathrm{Ru}-\mathrm{P}$ bond length (within the $\mathrm{P}-\mathrm{N}$ ligand) and the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ chemical shift of this P-atom. Complex 2a reacts with $\mathrm{H}_{2} \mathrm{~S}$ to form the thioaldehyde species cis $-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SCHCH}_{2} \mathrm{Ph}\right)$, and reacts with $\mathrm{H}_{2} \mathrm{O}$ to form poorly characterized carbonyl species; the reactivity resembles that of an earlier studied Ru-PNP species, where $\mathrm{PNP}=\mathrm{Me}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\left[\left(\mathrm{CH}_{2}\right)_{2} \mathrm{PPh}_{2}\right]_{2}$.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Our group has shown that the 5 -coordinate, square pyramidal complexes trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)(\mathrm{R}=\mathrm{Ph}, p$-tolyl; $\mathrm{P}-\mathrm{N}=o$-diphen-ylphosphino- N, N '-dimethylaniline) readily bind, under mild conditions, a wide range of small molecules (L) to form the 6 -coordinate species $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right) \mathrm{L}\left(\mathrm{L}=\mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{CO}, \mathrm{N}_{2} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}\right.$, alcohols, $\mathrm{H}_{2} \mathrm{~S}$, thiols) in which the chloride ligands are either cis or trans, as shown in Scheme 1 [1,2].

The use of crystallographic and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data for these $1: 1$ adducts (with either cis or trans chlorides) revealed an excellently linear correlation between Ru-P bond length (within the $\mathrm{P}-\mathrm{N}$ ligand) and chemical shift of this P-atom; more specifically, there is an inverse dependence of the shift with increase in bond length [2]. In this current paper, the studies are extended to reactions of the acetylenes $\mathrm{R}^{\prime} \mathrm{C} \equiv \mathrm{CH}$ ($\mathrm{R}^{\prime}=\mathrm{Ph}, p$-tolyl) with the trans- $\mathrm{RuCl}_{2}{ }^{-}$ $(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)$ complexes to form the vinylidene species cis- $\mathrm{RuCl}_{2}-$ $(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)\left(\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{R}^{\prime}\right)$. Such 1 -alkyne to vinylidene tautomerization chemistry at $\mathrm{Ru}^{\text {II }}$ centers was first reported in 1978 [3], and continues to attract organometallic interest because of its relevance in catalyzed reactions of hydrocarbons [4]. Thus, such chemistry is well-established, but we are unaware of a previous example where a 5 -coordinate species reacts to form a 6 -coordinate product, and where a bidentate $\mathrm{P}-\mathrm{N}$ ligand system is involved; the closest analogy to our system, and which prompted our selection of acetylenes, was one from Bianchini's group (see

[^0]Results and discussion) [5]. The new X-ray crystallographic and solution ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ data are of significance in extending the correlation noted above.

2. Experimental

2.1. General

All manipulations were carried out under an oxygen-free, Ar atmosphere at room temperature (r.t., $\sim 22^{\circ} \mathrm{C}$) using Schlenk techniques. The phenyl- and p-tolyl-acetylenes were Fisher Scientific products, and were used as received. The trans $-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)$ complexes ($\mathrm{R}=\mathrm{Ph}, \mathbf{1 a}$; p-tolyl, $\mathbf{1 b}$) were prepared by the reported methods [$1 \mathrm{c}, \mathrm{d}$], the precursor $\mathrm{RuCl}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$ being donated by Colonial Metals, Inc. Analytical grade solvents and CDCl_{3} were purified and stored by standard methods [2], and the Ar (HP grade, Matheson Gas Co) was dried by passage through CaSO_{4}. Details on the measurements of NMR and IR spectra were provided recently [2], with J values reported in Hz , and $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{m}=\mathrm{mul}-$ tiplet, $\mathrm{br}=$ broad. Microanalyses were performed in this department on a Carlo Erba 1106 instrument.

2.2. $\left.\mathrm{Cis}^{-\mathrm{RuCl}_{2}(P-N)(P \mathrm{Ph}}{ }_{3}\right)(=\mathrm{C}=\mathrm{CHPh})(\mathbf{2 a})$

Addition of a solution of $\mathrm{PhC} \equiv \mathrm{CH}(0.60 \mathrm{~mL}, 5.46 \mathrm{mmol})$ in CH_{2} $\mathrm{Cl}_{2}(3 \mathrm{~mL})$ to the green solution of $\mathbf{1 a}(385.0 \mathrm{mg}, 0.52 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ generated an orange solution, which was refluxed at $40^{\circ} \mathrm{C}$ for 2 h . The solution was then cooled to r.t. and stirred for $\sim 15 \mathrm{~h}$; the volume was then reduced to $\sim 5 \mathrm{~mL}$ and hexanes

Scheme 1. Reactivity of trans $-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)$ toward small molecules (L).
(20 mL) was then added to give a dark orange precipitate, that was collected, washed with hexanes ($4 \times 5 \mathrm{~mL}$), and dried under a flow of Ar. Yield: $380 \mathrm{mg}, 86 \%$. Anal. Calc. for $\mathrm{C}_{46} \mathrm{H}_{41} \mathrm{NCl}_{2} \mathrm{P}_{2} \mathrm{Ru}$: C, 65.64; H, 4.91; N, 1.66. Found: C, 65.45; H, 4.92; N, 1.55\%. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 37.85$ (d), $36.40(\mathrm{~d}) ;{ }^{2} \mathrm{~J}_{\mathrm{PP}}=26.5 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 8.2-$ 6.2 (34H, m, Ph), 3.60 ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), 3.11 (3H, s, NMe), 2.43 ($1 \mathrm{H}, \mathrm{d}$ of $\mathrm{d},=\mathrm{CH},{ }^{4} \mathrm{~J}_{\mathrm{HP}} \sim 6$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 358.2$ (pseudo $\mathrm{t}, \mathrm{C}_{\alpha}$, ${ }^{2} J_{\mathrm{CP}}=18.6$), $111.0\left(\mathrm{~s}, \mathrm{C}_{\beta}\right), 57.26\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Me}}\right), 52.52\left(\mathrm{~s}, \mathrm{C}_{\mathrm{Me}}\right)$ - see Scheme 2 for labeling of C -atoms.

The red-orange crystals of $\mathbf{2 a}$, which deposited over 2 days on evaporation of CDCl_{3} from the solution in the NMR tube, were analyzed crystallographically (Section 2.7).

2.3. $\mathrm{Cis}^{-R u C l} \mathrm{Cl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{P}(\mathrm{p} \text {-tolyl })_{3}\right)(=\mathrm{C}=\mathrm{CHPh})(\mathbf{2 b})$

Complex $\mathbf{2 b}$ was prepared as a dark orange solid in the same manner as described for $\mathbf{2 a}$ but using $\mathbf{1 b}$ as precursor (390 mg , 0.50 mmol). Yield: $350 \mathrm{mg}, 80 \%$. Anal. Calc. for $\mathrm{C}_{49} \mathrm{H}_{47} \mathrm{NCl}_{2} \mathrm{P}_{2} \mathrm{Ru}$: C, $66.59 ;$ H, $5.36 ; \mathrm{N}, 1.58 \%$. Found: C, 66.43 ; H, 5.29; N, 1.55. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 35.86$ (d), 32.96 (d); ${ }^{2} \mathrm{JPP}_{\mathrm{PP}}=26.6$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.8-6.2(31 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.54(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 3.08(3 \mathrm{H}, \mathrm{s}$, NMe), $2.40\left(1 \mathrm{H}, \mathrm{d}\right.$ of $\left.\mathrm{d},=\mathrm{CH},{ }^{4} \mathrm{~J}_{\mathrm{HP}} \sim 6\right), 2.16\left(9 \mathrm{H}, \mathrm{s}, \mathrm{p}-\mathrm{CH}_{3}\right)$.

2.4. $\mathrm{Cis}-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(=\mathrm{C}=\mathrm{CH}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CH}_{3}\right)(2 \mathrm{c})$

The dark yellow 2c was made as described for 2a but using five equiv. of 4-ethynyltoluene (p-tolylacetylene). Yield: $270 \mathrm{mg}, 61 \%$. Anal. Calc. for $\mathrm{C}_{47} \mathrm{H}_{43} \mathrm{NCl}_{2} \mathrm{P}_{2} \mathrm{Ru}$: C, 65.96; H, 5.06; $\mathrm{N}, 1.64$. Found: C, $65.75 ; \mathrm{H}, 5.02 ; \mathrm{N}, 1.52 \% .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 38.33$ (d), 36.72 (d); ${ }^{2} \mathrm{~J}_{\mathrm{PP}}=26.1 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 8.1-6.1(33 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, 3.59 ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), $3.08(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 2.43\left(1 \mathrm{H}, \mathrm{dd},=\mathrm{CH},{ }^{4} \mathrm{JHP}^{-}\right.$ ~6), 2.16 ($3 \mathrm{H}, \mathrm{s}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CH}_{3}$).

2.5. $\mathrm{Cis}-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SCHCH}_{2} \mathrm{Ph}\right)$ (3)

$\mathrm{H}_{2} \mathrm{~S}$ was bubbled through a solution of $\mathbf{2 a}(100 \mathrm{mg}, 0.12 \mathrm{mmol})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (15 mL) under reflux for 5 h , the original orange solution becoming brown. The solution was then concentrated to $\sim 5 \mathrm{~mL}$ and hexanes (15 mL) was added to precipitate a brown solid that was collected, washed with hexanes ($2 \times 10 \mathrm{~mL}$), and dried under Ar. Yield: 65 mg , but analytically pure $\mathbf{3}$ was not obtained even after reprecipitations from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta 59.61(\mathrm{~d}, \mathrm{P}-\mathrm{N}), 42.36\left(\mathrm{~d}, \mathrm{PPh}_{3}\right) ;{ }^{2} \mathrm{~J}_{\mathrm{PP}}=28.2 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ 8.7-6.1 ($34 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 3.04 ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), 2.52 ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), 3.18 $\left(1 \mathrm{H}, \mathrm{t}, \mathrm{S}=\mathrm{CH},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=15\right), 1.30\left(2 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{2},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=15\right)$.

2.6. Reaction of $2 \boldsymbol{a}$ with $\mathrm{H}_{2} \mathrm{O}$

$\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ was added to a solution of $\mathbf{2 a}(100 \mathrm{mg}, 0.12 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15 mL), and the mixture was refluxed for 5 h during which time the solution became brown. Addition of hexanes $(20 \mathrm{~mL})$ precipitated a brown solid that consisted of two major components in about a 1:1 ratio, as suggested by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data in $\mathrm{CDCl}_{3}: \delta 44.57$ (br), 38.28 (br), perhaps due to $\mathrm{RuCl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)-$ $\left(\mathrm{CH}_{2} \mathrm{Ph}\right)(\mathrm{CO})(4)$, and $\delta 50.55(\mathrm{br}), 18.74$ (br), which is possibly $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{CO})(5)$ (see Section 3, Scheme 4). ${ }^{1} \mathrm{H}$ NMR: δ $8.5-6.0(\mathrm{~m}), 3.5-1.2$ (overlapping br signals). IR (KBr): $v_{\mathrm{CO}} 2046$, $1990 \mathrm{~cm}^{-1}$. Species 4 and 5 were not separated.

2.7. X-ray crystallographic analysis

X-ray analysis of 2a was carried out at 295 K on a Rigaku AFC6S diffractometer with graphite-monochromated $\mathrm{CuK} \alpha$ radiation (1.54178 Å). Some crystallographic data for 2a are: 4271 total reflections, 4008 unique ($R_{\text {int }}=0.066$), 6132 observed $[I>2 \sigma(I)]$, $R_{1}=0.043 ; w R_{2}=0.094 ;$ GOF $=1.07$; residual density $=-0.87 \mathrm{e} / \AA^{3}$. The structure was solved by direct methods [6], with all refinements being performed using the shelxi-2012 program [7] via the Olex2 interface [8]. All non H-atoms were refined anisotropically, and all other H -atoms were placed in calculated positions. The ORTEP plot and selected bond lengths and angles are shown in Fig. 1 and Table 1, while the full experimental parameters and details of the structure are given in CIF format in the Supplementary information.

3. Results and discussion

The green solution of the trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)$ complexes ($\mathrm{R}=\mathrm{Ph}, \mathbf{1 a} ; p$-tolyl, 1b) and a 10 -fold excess of the HCCR^{\prime} acetylenes ($\mathrm{R}^{\prime}=\mathrm{Ph}, p$-tolyl) react at reflux temperature in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give an orange solution from which dark orange, vinylidene complexes of the type cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)\left(\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{R}^{\prime}\right)(\mathbf{2 a}-\mathbf{c})$ are readily isolated, see Scheme 2. Presumably the acetylene would initially bind in the vacant site, trans to the P -atom of the $\mathrm{P}-\mathrm{N}$ ligand $\left(\mathrm{P}_{\mathrm{A}}\right)$, to give an intermediate with trans-chlorides, with a subsequent isomerization needed to form 2 that contains cis-chlorides (see also Scheme 3, later).

Crystallographic data for cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{Ph})(\mathbf{2 a})$ (Fig. 1), together with essentially identical, key NMR data for 2ac, reveal a pseudo octahedral structure containing cis Cl -atoms, with P_{A} and the vinylidene group trans to the chlorides; the PR_{3}

Scheme 2. Reaction of $\mathbf{1}[\mathrm{R}=\mathrm{Ph}(\mathbf{1 a})$; p-tolyl (1b) $]$ with acetylenes to form $\mathbf{2}\left[\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{Ph}(\mathbf{2 a}) ; \mathrm{R}=p\right.$-tolyl, $\mathrm{R}^{\prime}=\mathrm{Ph}(\mathbf{2 b}) ; \mathrm{R}=\mathrm{Ph}, \mathrm{R}^{\prime}=p$-tolyl $\left.(\mathbf{2 c})\right]$.

https://daneshyari.com/en/article/1310222

Download Persian Version:

https://daneshyari.com/article/1310222

Daneshyari.com

[^0]: * Corresponding author. Tel.: +1 604822 6645; fax: +1 6048222847.

 E-mail address: brj@chem.ubc.ca (B.R. James).

