Inorganica Chimica Acta 408 (2013) 126-130

Contents lists available at ScienceDirect

Inorganica Chimica Acta

journal homepage: www.elsevier.com/locate/ica

Reactions of phenylacetylene and *p*-tolylacetylene with a five-coordinate Ru^{II} complex

Erin S.F. Ma, Brian O. Patrick, Brian R. James*

Department of Chemistry, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada

ARTICLE INFO

Article history: Received 19 July 2013 Received in revised form 30 August 2013 Accepted 3 September 2013 Available online 12 September 2013

Keywords: Ruthenium complexes P–N ligand ³¹P NMR data Acetylenes Vinylidene structure

ABSTRACT

The acetylenes R'C==CH react with the known 5-coordinate, green, square-pyramidal *trans*-RuCl₂-(P–N)(PR₃) complexes (R', R = Ph, *p*-tolyl; P–N = *o*-diphenylphosphino-*N*,*N*'-dimethylaniline) in CH₂Cl₂ solution to form the orange vinylidene derivatives, *cis*-RuCl₂(P–N)(PR₃)(C=C(H)R') (**2**); this is a well-known type reaction, but is the first to involve a bidentate P–N ligand, and convert a 5-coordinate precursor to a 6-coordinate product. Crystal structure and ³¹P{¹H} NMR data for the R = R' = Ph complex (**2a**), extend significantly an established linear correlation between the Ru–P bond length (within the P–N ligand) and the ³¹P{¹H} chemical shift of this P-atom. Complex **2a** reacts with H₂S to form the thioalde-hyde species *cis*-RuCl₂(P–N)(PPh₃)(SCHCH₂Ph), and reacts with H₂O to form poorly characterized carbonyl species; the reactivity resembles that of an earlier studied Ru-PNP species, where PNP = Me(CH₂)₂N[(CH₂)₂PPh₂]₂.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Our group has shown that the 5-coordinate, square pyramidal complexes *trans*-RuCl₂(P–N)(PR₃) (R = Ph, *p*-tolyl; P–N = *o*-diphenylphosphino-*N*,*N*'-dimethylaniline) readily bind, under mild conditions, a wide range of small molecules (L) to form the 6-coordinate species RuCl₂(P–N)(PR₃)L (L = H₂, N₂, CO, N₂O, NH₃, H₂O, alcohols, H₂S, thiols) in which the chloride ligands are either *cis* or *trans*, as shown in Scheme 1 [1,2].

The use of crystallographic and ³¹P{¹H} NMR data for these 1:1 adducts (with either *cis* or *trans* chlorides) revealed an excellently linear correlation between Ru-P bond length (within the P-N ligand) and chemical shift of this P-atom; more specifically, there is an inverse dependence of the shift with increase in bond length [2]. In this current paper, the studies are extended to reactions of the acetylenes $R'C \equiv CH$ (R' = Ph, *p*-tolyl) with the *trans*-RuCl₂-(P-N)(PR₃) complexes to form the vinylidene species cis-RuCl₂- $(P-N)(PR_3)(C=C(H)R')$. Such 1-alkyne to vinylidene tautomerization chemistry at Ru^{II} centers was first reported in 1978 [3], and continues to attract organometallic interest because of its relevance in catalyzed reactions of hydrocarbons [4]. Thus, such chemistry is well-established, but we are unaware of a previous example where a 5-coordinate species reacts to form a 6-coordinate product, and where a bidentate P-N ligand system is involved; the closest analogy to our system, and which prompted our selection of acetylenes, was one from Bianchini's group (see

Results and discussion) [5]. The new X-ray crystallographic and solution ${}^{31}P{}^{1}H{}$ data are of significance in extending the correlation noted above.

2. Experimental

2.1. General

All manipulations were carried out under an oxygen-free, Ar atmosphere at room temperature (r.t., $\sim 22 \text{ °C}$) using Schlenk techniques. The phenyl- and *p*-tolyl-acetylenes were Fisher Scientific products, and were used as received. The *trans*-RuCl₂(P–N)(PR₃) complexes (R = Ph, **1a**; *p*-tolyl, **1b**) were prepared by the reported methods [1c,d], the precursor RuCl₃·*x*H₂O being donated by Colonial Metals, Inc. Analytical grade solvents and CDCl₃ were purified and stored by standard methods [2], and the Ar (HP grade, Matheson Gas Co) was dried by passage through CaSO₄. Details on the measurements of NMR and IR spectra were provided recently [2], with *J* values reported in Hz, and s = singlet, d = doublet, m = multiplet, br = broad. Microanalyses were performed in this department on a Carlo Erba 1106 instrument.

2.2. Cis-RuCl₂(P-N)(PPh₃)(=C=CHPh) (2a)

Addition of a solution of PhC \equiv CH (0.60 mL, 5.46 mmol) in CH₂-Cl₂ (3 mL) to the green solution of **1a** (385.0 mg, 0.52 mmol) in CH₂Cl₂ (20 mL) generated an orange solution, which was refluxed at 40 °C for 2 h. The solution was then cooled to r.t. and stirred for ~15 h; the volume was then reduced to ~5 mL and hexanes

Inorganica Chimica Acta

^{*} Corresponding author. Tel.: +1 604 822 6645; fax: +1 604 822 2847. *E-mail address:* brj@chem.ubc.ca (B.R. James).

^{0020-1693/\$ -} see front matter @ 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.ica.2013.09.009

cis-products : $L = H_2S$, thiol, H_2 , N_2 , N_2O ; *trans*-products : $L = H_2O$, alcohol, CO, NH_3

Scheme 1. Reactivity of trans-RuCl₂(P-N)(PR₃) toward small molecules (L).

(20 mL) was then added to give a dark orange precipitate, that was collected, washed with hexanes (4 x 5 mL), and dried under a flow of Ar. Yield: 380 mg, 86%. Anal. Calc. for C₄₆H₄₁NCl₂P₂Ru: C, 65.64; H, 4.91; N, 1.66. Found: C, 65.45; H, 4.92; N, 1.55%. ³¹P{¹H} NMR (CDCl₃): δ 37.85 (d), 36.40 (d); ²J_{PP} = 26.5. ¹H NMR (CDCl₃): δ 8.2–6.2 (34H, m, Ph), 3.60 (3H, s, NMe), 3.11 (3H, s, NMe), 2.43 (1H, d of d, =CH, ⁴J_{HP} ~ 6). ¹³C{¹H} NMR (CDCl₃): δ 358.2 (pseudo t, C_α, ²J_{CP} = 18.6), 111.0 (s, C_β), 57.26 (s, C_{Me}), 52.52 (s, C_{Me}) – see Scheme 2 for labeling of C-atoms.

The red-orange crystals of 2a, which deposited over 2 days on evaporation of CDCl₃ from the solution in the NMR tube, were analyzed crystallographically (Section 2.7).

2.3. $Cis-RuCl_2(P-N)(P(p-tolyl)_3)(=C=CHPh)$ (2b)

Complex **2b** was prepared as a dark orange solid in the same manner as described for **2a** but using **1b** as precursor (390 mg, 0.50 mmol). Yield: 350 mg, 80%. *Anal.* Calc. for $C_{49}H_{47}NCl_2P_2Ru: C$, 66.59; H, 5.36; N, 1.58%. Found: C, 66.43; H, 5.29; N, 1.55. ³¹P{¹H} NMR (CDCl₃): δ 35.86 (d), 32.96 (d); ²J_{PP} = 26.6. ¹H NMR (CDCl₃): δ 7.8–6.2 (31H, m, Ph), 3.54 (3H, s, NMe), 3.08 (3H, s, NMe), 2.40 (1H, d of d, =CH, ⁴J_{HP} ~ 6), 2.16 (9H, s, *p*-CH₃).

2.4. $Cis-RuCl_2(P-N)(PPh_3)(=C=CH-C_6H_4-CH_3)$ (2c)

The dark yellow **2c** was made as described for **2a** but using five equiv. of 4-ethynyltoluene (*p*-tolylacetylene). Yield: 270 mg, 61%. *Anal.* Calc. for C₄₇H₄₃NCl₂P₂Ru: C, 65.96; H, 5.06; N, 1.64. Found: C, 65.75; H, 5.02; N, 1.52%. ³¹P{¹H} NMR (CDCl₃): δ 38.33 (d), 36.72 (d); ²*J*_{PP} = 26.1. ¹H NMR (CDCl₃): δ 8.1–6.1 (33H, m, Ph), 3.59 (3H, s, NMe), 3.08 (3H, s, NMe), 2.43 (1H, dd, =*CH*, ⁴*J*_{HP} - ~ 6), 2.16 (3H, s, C₆H₄-*CH*₃).

2.5. Cis-RuCl₂(P-N)(PPh₃)(SCHCH₂Ph) (3)

H₂S was bubbled through a solution of **2a** (100 mg, 0.12 mmol) in CD₂Cl₂ (15 mL) under reflux for 5 h, the original orange solution becoming brown. The solution was then concentrated to ~5 mL and hexanes (15 mL) was added to precipitate a brown solid that was collected, washed with hexanes (2 × 10 mL), and dried under Ar. Yield: 65 mg, but analytically pure **3** was not obtained even after reprecipitations from CH₂Cl₂/hexanes. ³¹P{¹H} NMR (CDCl₃): δ 59.61 (d, *P*–N), 42.36 (d, *PPh*₃); ²J_{PP} = 28.2. ¹H NMR (CDCl₃): δ 8.7–6.1 (34H, m, Ph), 3.04 (3H, s, NMe), 2.52 (3H, s, NMe), 3.18 (1H, t, S=CH, ³J_{HH} = 15), 1.30 (2H, d, CH₂, ³J_{HH} = 15).

2.6. Reaction of 2a with H_2O

H₂O (1 mL) was added to a solution of **2a** (100 mg, 0.12 mmol) in CH₂Cl₂ (15 mL), and the mixture was refluxed for 5 h during which time the solution became brown. Addition of hexanes (20 mL) precipitated a brown solid that consisted of two major components in about a 1:1 ratio, as suggested by ³¹P{¹H} NMR data in CDCl₃: δ 44.57 (br), 38.28 (br), perhaps due to RuCl(P–N)(PPh₃)-(CH₂Ph)(CO) (**4**), and δ 50.55 (br), 18.74 (br), which is possibly RuCl₂(P–N)(PPh₃)(CO) (**5**) (see Section 3, Scheme 4). ¹H NMR: δ 8.5–6.0 (m), 3.5–1.2 (overlapping br signals). IR (KBr): *v*_{CO} 2046, 1990 cm⁻¹. Species **4** and **5** were not separated.

2.7. X-ray crystallographic analysis

X-ray analysis of **2a** was carried out at 295 K on a Rigaku AFC6S diffractometer with graphite-monochromated CuK α radiation (1.54178 Å). Some crystallographic data for **2a** are: 4271 total reflections, 4008 unique ($R_{int} = 0.066$), 6132 observed [$I > 2\sigma(I)$], $R_1 = 0.043$; $wR_2 = 0.094$; GOF = 1.07; residual density = -0.87 e/Å^3 . The structure was solved by direct methods [6], with all refinements being performed using the SHELXL-2012 program [7] via the Olex2 interface [8]. All non H-atoms were refined anisotropically, and all other H-atoms were placed in calculated positions. The OR-TEP plot and selected bond lengths and angles are shown in Fig. 1 and Table 1, while the full experimental parameters and details of the structure are given in CIF format in the Supplementary information.

3. Results and discussion

The green solution of the *trans*-RuCl₂(P–N)(PR₃) complexes (R = Ph, **1a**; *p*-tolyl, **1b**) and a 10-fold excess of the HCCR' acetylenes (R' = Ph, *p*-tolyl) react at reflux temperature in CH₂Cl₂ to give an orange solution from which dark orange, vinylidene complexes of the type *cis*-RuCl₂(P–N)(PR₃)(C=C(H)R') (**2a**–**c**) are readily isolated, see Scheme 2. Presumably the acetylene would initially bind in the vacant site, trans to the P-atom of the P–N ligand (P_A), to give an intermediate with *trans*-chlorides, with a subsequent isomerization needed to form **2** that contains *cis*-chlorides (see also Scheme 3, later).

Crystallographic data for *cis*-RuCl₂(P–N)(PPh₃)(C=C(H)Ph) (**2a**) (Fig. 1), together with essentially identical, key NMR data for **2a**–**c**, reveal a pseudo octahedral structure containing *cis* Cl-atoms, with P_A and the vinylidene group *trans* to the chlorides; the PR₃

Scheme 2. Reaction of 1 [R = Ph (1a); p-tolyl (1b)] with acetylenes to form 2 [R = R' = Ph (2a); R = p-tolyl, R' = Ph (2b); R = Ph, R' = p-tolyl (2c)].

Download English Version:

https://daneshyari.com/en/article/1310222

Download Persian Version:

https://daneshyari.com/article/1310222

Daneshyari.com