

Available online at www.sciencedirect.com

Inorganica Chimica Acta 359 (2006) 4874-4884

www.elsevier.com/locate/ica

Synthesis, structure, and reactivity of fluorous phosphorus/carbon/phosphorus pincer complexes derived from P(CH₂)₅P backbones

Crestina S. Consorti, Frank Hampel, J.A. Gladysz *

Institut für Organische Chemie, Friedrich-Alexander Universität Erlangen-Nürnberg, Henkestraße 42, 91054 Erlangen, Germany

Received 28 June 2006; accepted 31 July 2006 Available online 10 August 2006

Dedicated to Professor Dr. Wolfgang A. Herrmann in appreciation of his many contributions to inorganic and organometallic chemistry.

Abstract

Reactions of the diphosphine H₂P(CH₂)₅PH₂ and fluorous alkenes H₂C=CHR_{fn} (excess; $R_{fn} = (CF_2)_{n-1}CF_3$; n = a, 6; b, 8; c, 10) at 60 °C in the presence of AIBN give the precursors ($R_{fn}CH_2CH_2$)₂P(CH₂)₅P(CH₂CH₂R_{fn})₂ (**2a-c**; 68–74%). These react with Pd(O₂CCF₃)₂ in CF₃C₆F₅ at 80 °C to give the title complexes ($R_{fn}CH_2CH_2$)₂P(CH₂)₂P(CH₂)₂P(CH₂)₂P(CH₂)₂P(CH₂CH₂R_{fn})₂Pd(O₂CCF₃) (**5a-c**, 51–18%). Addition of LiCl to **5b** gives ($R_{f8}CH_2CH_2$)₂P(CH₂)₂CH(CH₂)₂P(CH₂CH₂R_{f8})₂PdCl (**6b**, 97%); subsequent reaction with MeLi affords the corresponding methyl complex (97%). A solvate of **6b** is crystallographically characterized. The structure exhibits CH₂CH₂R_{f8} groups with nearly anti C–C–C–C conformations, extending in parallel above and below the palladium square plane to create fluorous lattice domains. Reactions of **2b** and other metal complexes are described; in the cases of (PhCN)₂PdCl₂ or (COD)₂PtCl₂ (CF₃C₆H₅, room temperature), bimetallic species in which two MCl₂ moieties are bridged by two diphosphines appear to form. The CF₃C₆F₁₁/toluene partition coefficients of **2a-c** and **5a-c** establish high fluorophilicities; despite the lower fluorine weight%, those of **5a-c** are slightly greater ((97.4–99.7); (2.6–0.3) versus (95.3–99.3); (4.7–0.7)).

© 2006 Elsevier B.V. All rights reserved.

Keywords: Pincer; Fluorous; Radical addition; Palladium; Platinum; Iridium; Partition coefficient

1. Introduction

Pincer ligands and their complexes continue to play increasingly important roles in metal-catalyzed reactions [1]. Systems based upon aliphatic backbones [2–4] as opposed to the more usual arene-based tethers have provided several notable recent developments [2g,3e,4d]. A variety of approaches to recoverable pincer ligands and complexes have been reported [5–14]. These efforts have included fluorous derivatives [13,14], which can be recycled

by a variety of liquid/liquid and liquid/solid biphasic techniques [15]. Representative examples are provided in Scheme 1 (A-D) [13,14]. However, to our knowledge there have been no attempts to immobilize pincer complexes with aliphatic backbones.

We have described several fluorous arene-based phosphorus/carbon/phosphorus or $PC(sp^2)P$ pincer ligands and metal complexes, as exemplified by **D** in Scheme 1 [14]. However, the ligands were much more difficult to prepare than their non-fluorous counterparts. New types of side-reactions were encountered, and significantly lower yields were obtained. Thus, our attention was drawn to analogs with aliphatic backbones. A variety of convenient protocols for synthesizing aliphatic fluorous phosphines

^{*} Corresponding author. Tel.: +49 9131 8522540; fax: +49 9131 8526865.

E-mail address: gladysz@chemie.uni-erlangen.de (J.A. Gladysz).

^{0020-1693/\$ -} see front matter @ 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.ica.2006.07.092

Scheme 1. Representative fluorous pincer complexes $(R_{fn} = (CF_2)_{n-1} - CF_3)$.

have been developed in our laboratory [16] and we were optimistic that these could be applied to pincer systems without difficulty.

Accordingly, we set out to prepare fluorous 1,5-diphosphines of the formula $(R_{fn}CH_2CH_2)_2P(CH_2)_5P(CH_2-CH_2R_{fn})_2$, and define their coordination chemistry. Analogous non-fluorous ligands have been used as springboards to a variety of $PC(sp^3)P$ pincer complexes [2–4]. We report below (1) efficient high yield syntheses of such ligands, (2) their metalation to give fluorous palladium $PC(sp^3)P$ pincer complexes, (3) subsequent substitution reactions, (4) preliminary data involving adducts of other metals, (5) the crystallographic characterization an R_{f8} based palladium complex, and (6) key phase properties of the preceding compounds.

2. Results

2.1. Diphosphine synthesis and characterization

We and others have described many free radical chain additions of $R_{3-x}PH_x$ species to fluorous terminal alkenes $H_2C=CHR_{fn}$ [14,16]. Thus, the known diprimary 1,5diphosphine $H_2P(CH_2)_5PH_2$ (1) was synthesized from the corresponding 1,5-dibromide by a convenient and easily scalable Arbuzov/reduction sequence [17]. As shown in Scheme 2 (top), 1 and excess $H_2C=CHR_{fn}$ (n = a, 6; b, 8; c, 10) were reacted neat at 60 °C in the presence of the radical initiator AIBN. Workups gave the fluorous ditertiary diphosphines ($R_{fn}CH_2CH_2$)₂P(CH₂)₅P(CH₂CH₂ R_{fn})₂ (**2a**c) as air sensitive liquids (**2a**) or solids (**2b**,c) in 68–74% yields on 3–5 g scales.

The diphosphines **2a**–c were characterized by microanalyses and NMR spectroscopy (¹H, ¹³C, ¹⁹F, ³¹P), as summarized in Section 4. The chemical shifts and coupling constants associated with the P(CH₂)₅P and P(CH₂-CH₂CF₂) segments closely resembled those reported for related compounds earlier [2a,16].

Scheme 2. Synthesis of fluorous pincer ligands and palladium complexes.

As summarized in Table 1, the diphosphine **2a** was very soluble in the fluorous solvent $CF_3C_6F_{11}$ (perfluoro(methylcyclohexane)), the hybrid solvent $CF_3C_6H_5$ [18], and the non-fluorous solvent $CF_3C_6F_5$ [18]. It was moderately soluble in THF and CH_2Cl_2 . The homologs **2b** and **2c** exhibited progressively lower solubilities, consistent with R_{fn} length trends observed with other fluorous compounds [16a]. No dramatic changes in solubilities were noted at 60 °C. The $CF_3C_6F_{11}$ /toluene partition coefficients were determined by ¹⁹F NMR as described in Section 4. As summarized in Table 2, values ranged from 95.3:4.7 (**2a**) to 99.3:0.7 (**2c**), indicative of high fluorophilicities.

2.2. Diphosphine derivatization

Reactions of non-fluorous 1,5-diphosphines R₂P(CH₂)₅- PR_2 with L_2PdCl_2 or L_2PtCl_2 species often give bimetallic complexes of the type E (Scheme 3) [2a,2b]. These can be converted at elevated temperatures to monometallic PC(sp³)P pincer complexes. Thus, **2b** and (PhCN)₂PdCl₂ were combined in $CF_3C_6F_5$ at room temperature. A ³¹P NMR spectrum of the reaction mixture showed one signal, suggesting the clean formation of a single complex (3). Workup gave a seemingly homogeneous material (97%), but FAB mass spectra did not give informative ion patterns. The ¹³C NMR spectrum showed virtual triplets [19] for the PCH₂CH₂CF₂ signals, suggesting a *trans* geometry. An analogous reaction of **2b** and (COD)₂PtCl₂ also appeared to give a single complex (4; 96%). The 31 P NMR spectrum showed one signal with a J_{PtP} value of 2680 Hz, diagnostic for PtCl₂ complexes with trans

Download English Version:

https://daneshyari.com/en/article/1310964

Download Persian Version:

https://daneshyari.com/article/1310964

Daneshyari.com