

Inorganica Chimica Acta

www.elsevier.com/locate/ica

Inorganica Chimica Acta 361 (2008) 3309-3314

Diphenylglycoluril as a novel ligand architecture for dirhodium(II) carboxamidates

Jason M. Nichols, Yu Liu, Peter Zavalij, Lyle Isaacs*, Michael P. Doyle*

Department of Chemistry and Biochemistry, University of Maryland, Building 091, College Park, MD 20742, United States

Received 30 October 2007; accepted 2 December 2007 Available online 8 December 2007

Dedicated to Robert J. Angelici.

Abstract

1,6-Bis-(N-benzyl)-diphenylglycoluril (1,6-BPGlyc) was used as a ligand in the synthesis of a dinuclear rhodium(II) paddlewheel complex. The ligand exchange reaction from $Rh_2(OAc)_4$ was remarkably selective for the formation of $Rh_2(1,6$ -BPGlyc)₂(OAc)₂ with a *cis*-(1,3) ligand arrangement in 46% isolated yield. The bis-substitution pattern and diastereoselective ligand exchange is attributed to the steric bulk of the glycoluril backbone that prevents further ligand substitution. $Rh_2(1,6$ -BPGlyc)₂(OAc)₂ catalyzes cyclopropanation reactions *via* decomposition of diazoacetates with reactivities and selectivities that were comparable to those of dirhodium(II) tetra-kis- μ -carboxamidates.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Dirhodium; Dirhodium carboxamidate; Glycoluril; Cyclopropanation; Catalysis

1. Introduction

Glycoluril derivatives are the subject of numerous studies because of their synthetic accessibility, their curved and rigid structure, and their hydrogen-bond donating/accepting ureidyl functionality. The nature by which these features convey form and function to supramolecular structures continues to receive considerable attention in areas such as crystal engineering [1], self-association, and host/guest chemistry; a number of reviews on these topics are available [2].

Coordination complexes that take advantage of the structural characteristics of glycoluril are less well known. Although glycoluril derivatives are incorporated as elements of phosphine or amine based ligands [3], the coordinating ability of the nascent glycoluril subunit has yet to be

explored. This is surprising since glycoluril contains ureidyl functionality that can act as a μ -bridging ligand (μ -NCO) in a metal-coordination complex. We report that one such complex is a dirhodium(II) carboxamidate.

Dirhodium(II) tetrakis-u-carboxamidates are long known as asymmetric catalysts for carbene transformations [4]. They are constructed with four u-NCO bridging ligands around a dinuclear rhodium core in a paddlewheel fashion. In complexes prepared for asymmetric catalysis, the two nitrogen atoms and two oxygen atoms are bound to each rhodium in a cis-(2,2) orientation. Herein we report the synthesis and structural characterization of a dirhodium(II) bis-μ-carboxamidate (1: Rh₂L₂(OAc)₂) where the μ-NCO bridging ligand is 1,6-bis-(N-benzyl)-diphenylglycoluril (2: L = 1.6-BPGlyc). As the general form of glycoluril is similar to the imidazolidinone class of ligands (3: HMPPIM = methyl N-(3-phenylpropanoyl)-2-oxoimidazolidine-5-carboxylate), the effects of glycoluril ligand structure on the catalysis of diazodecomposition reactions is compared to Rh₂(OAc)₄ and Rh₂(4S-MPPIM)₄ (Fig. 1).

^{*} Corresponding authors. Tel.: +1 301 405 1788; fax: +1 301 314 2779. E-mail addresses: lisaacs@umd.edu (L. Isaacs), mdoyle3@umd.edu (M.P. Doyle).

Fig. 1. Comparison of glycoluril and imidizolidinone ligands.

2. Experimental

2.1. General

Tetrakis-u-acetato-diaguodirhodium(II) ethyl and diazoacetate were obtained commercially. The preparation of 1,6-bis-(N-benzyl)-diphenylglycoluril [1c], Rh₂(4S-MPPIM)₄ [5], and methyl phenyldiazoacetate [6] have been previously described. ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra were obtained on a Bruker DRX-400 NMR as solutions in CDCl₃ unless otherwise noted. Chemical shifts are reported in parts per million (ppm, δ) downfield from Me₄Si (TMS). Gas chromatographic analysis was obtained on a Varian 3900 gas chromatograph equipped with a Varian Factor 4 capillary column (0.25 mm × 30 m). Preparative chromatographic purification was performed using SiliCycle (60 Å, 40-63 mesh) silica gel according to the method of Still [7]. Thin layer chromatography (TLC) was performed on Merck 0.25 mm silica gel 60 F₂₅₄ plates with visualization by fluorescence quenching or chemical stain. UV-Vis spectra were obtained on a Varian Cary 50 spectrophotometer using a xenon flash lamp. IR spectra were recorded on a JASCO FT/IR 4100 spectrometer. Anhydrous CH₂Cl₂ was purified prior to use by nitrogen forced-flow over activated alumina as described by Grubbs [8].

2.2. $Bis-\mu-\{1,6-(N-benzyl)\ diphenylgly coluril\}-bis-\mu-acetatodirhodium(II)$ acetonitrile solvate (1)

Tetrakis-µ-acetato-diaquodirhodium(II) (150 mg, 1,6-bis-(N-benzyl)-diphenylglycoluril 0.31 mmol) and (1.25 g, 2.50 mmol) were dissolved in a mixture of chlorobenzene/acetonitrile (15 mL, 25:1) [9]. The reaction flask was fitted with a Soxhlet extraction apparatus charged with a thimble containing a mixture of Na₂CO₃/sand (3 g, 2:1) and a condenser. After purging the system with N2, the reaction mixture was heated to reflux for 48 h. The solvent was removed under reduced pressure to yield a glassy blue solid. The solid was loaded directly onto a preparatory silica gel column and eluted with CH2Cl2, then CH2Cl2/acetone (99:1), followed by CH₂Cl₂/acetone (98:2). Two sequential recrystallizations from boiling acetonitrile/methanol (15:1) yielded dark red crystals (184 mg, 0.145 mmol, 46% yield). TLC: $R_f = 0.20$ (CH₂Cl₂/MeOH 98:2). ¹H NMR: $\delta = 7.33$ (6H, t, J = 7.6 Hz), 7.30-7.15 (18H, comp), 7.13 (6H, d, J = 7.6 Hz), 7.03 (4H, t, J = 7.4 Hz), 6.80–6.70 (6H, comp), 5.46 (2H, s), 4.80 (2H, d, J = 17.2 Hz), 3.95–

3.90 (4H, comp), 3.84 (2H, d, J=16.8 Hz), 2.09 (6H, s) ppm. ¹³C NMR: $\delta=191.5$, 172.3, 161.6, 140.0, 139.4, 137.9, 128.5, 128.3, 128.0, 127.1, 126.9, 126.6, 126.5, 126.2, 126.0, 116.0, 92.3, 86.6, 45.9, 45.1, 23.9 ppm. UV–Vis (CH₃OH) $\lambda_{\rm max}$ (ϵ M⁻¹ cm⁻¹) nm = 580 (188). IR (neat) 1611 (O–(C=O)–C stretch), 1699 (N–(C=O)–N stretch) cm⁻¹. XRD (CCDC #661587): crystals were grown by slow evaporation from acetonitrile.

2.3. X-ray structure determination of 1

A purple prism of $Rh_2C_{68}H_{62}N_{10}O_8 \cdot 5CH_3CN$ with approximate dimensions $0.135 \times 0.22 \times 0.435 \text{ mm}^3$ was used for the X-ray crystallographic analysis. The X-ray intensity data were measured at 220(2) K on a three-circle diffractometer system equipped with Bruker Smart1000 CCD area detector. Detection was performed using a graphite monochromator and a Mo K α fine-focus sealed tube ($\lambda = 0.71073 \text{ Å}$) operated at 50 kV and 30 mA. The

Table 1 Crystal data and structure refinement for $Rh_2C_{68}H_{62}N_{10}O_8 \cdot 5CH_3CN$

Empirical formula	Rh ₂ C ₆₈ H ₆₂ N ₁₀ O ₈ · 5CH ₃ CN
Formula weight (g/mol)	1558.37
Temperature (K)	220(2)
Radiation, 1 (Å)	Μο Κα, 0.71073
Crystal size (mm)	$0.435 \times 0.22 \times 0.135$
Crystal habit	purple prism
Crystal system	monoclinic
Space group	$P2_1/c$
Unit cell dimensions	
a (Å)	23.913(2)
b (Å)	15.2843(15)
c (Å)	20.481(2)
α (°)	90
β (°)	93.740(2)
γ (°)	90
Volume (Å ³)	7469.7(13)
Z	4
Density, ρ_{calc} (g/cm ³)	1.386
Absorption coefficient, μ (mm ⁻¹)	0.508
θ Range (°)	2.40-27.50
Reflections collected	91920
Independent reflections	17118
Observed reflection, $I > 2\sigma(I)$	12875
Maximum and minimum transmission ^a	0.934 and 0.803
Goodness-of-fit on F^2	1.006
$\operatorname{Max} \Delta/\sigma $	0.001
Final R indices ^b	
$R_1, I \geq 2\sigma(I)$	0.0498
wR_2 , all data	0.1168
$R_{ m int}$	0.0418
$R_{ m sig}$	0.0313
Minimum, maximum peaks (e/Å ³)	0.952, -1.437
9 4 4	

^a Absorption correction was performed using the semi-empirical from equivalents method (SADABS).

Function minimized was $\sum w (F_o^2 - F_c^2)^2$ where $R_1 = \sum ||F_o| - |F_c|| / \sum |F_o|$, $wR_2 = \left[\sum w (F_o^2 - F_c^2)^2 / \sum w (F_o^2)^2 \right]^{1/2}$ with a weighting scheme $w = 1 / \left[\sigma^2 (F_o^2) + (0.015P)^2 + 27.8P \right]$, $P = \left[\max (F_o^2, 0) + 2F_o^2 \right] / 3$.

Download English Version:

https://daneshyari.com/en/article/1311607

Download Persian Version:

https://daneshyari.com/article/1311607

Daneshyari.com