

Available online at www.sciencedirect.com

Inorganica Chimica Acta 359 (2006) 2489-2494

Inorganica Chimica Acta

www.elsevier.com/locate/ica

Syntheses and characterization of titanium malonato and amino acid complexes: [Ti(cp^{*})₂(OOCCH₂NMe₂)] – The first structurally characterized α-amino acid titanium(III) complex

Thomas Krüger^a, Christoph Wagner^a, Tadeusz Lis^d, Ralph Kluge^b, Wolfgang Mörke^c, Dirk Steinborn^{a,*}

^a Institut f
ür Anorganische Chemie, Fachbereich Chemie, Martin-Luther-Universit
ät Halle-Wittenberg, D-06120, Halle, Kurt-Mothes-Stra
ße 2, Germany
 ^b Institut f
ür Organische Chemie, Fachbereich Chemie, Martin-Luther-Universit
ät Halle-Wittenberg, D-06120, Halle, Kurt-Mothes-Stra
ße 2, Germany
 ^c Institut f
ür Lebensmittelchemie und Umweltchemie, Fachbereich Chemie, Martin-Luther-Universit
ät Halle-Wittenberg, D-06120, Halle, Kurt-Mothes-Stra
ße 2, Germany
 ^c Institut f
ür Lebensmittelchemie und Umweltchemie, Fachbereich Chemie, Martin-Luther-Universit
ät Halle-Wittenberg, D-06120, Halle, Kurt-Mothes-Stra
ße 2, Germany

^d Faculty of Chemistry, Wroclaw University, 14, F. Joliot-Curie, 50-383 Wroclaw, Poland

Received 19 December 2005; accepted 30 January 2006 Available online 20 March 2006

Abstract

The reaction of $[\text{Ti}(\text{cp}^*)_2(\text{BTMSA})]$ (1) (cp^{*} = η^5 -C₅Me₅, BTMSA = bis(trimethylsily)acetylene) with malonic acids ((HOOC)₂CR₂, R = H, Me) and *N*,*N*-dimethylglycine resulted in the formation of titanium(IV) dicarboxylato complexes $[\text{Ti}(\text{cp}^*)_2(\text{OOC})_2\text{CR}_2]$] (R = H, **2**; R = Me, **3**) and an α -amino acid titanium(III) complex $[\text{Ti}(\text{cp}^*)_2(\text{OOCCH}_2\text{NMe}_2)]$ (**4**). The identities of complexes **2**–4 were confirmed by microanalysis, ¹H and ¹³C NMR spectroscopy (**2**, **3**), ESI-MS and CID experiments (**2**, **3**) as well as by ESR and magnetic measurements ($\mu_{\text{eff}} = 1.81$, 298 K) for **4**. Single X-ray diffraction analyses of **2** and **4** exhibited monomolecular complexes in which the titanium atom is distorted tetrahedrally coordinated by two η^5 -C₅Me₅ rings and by the chelating bound malonato- $\kappa^2 O$, *O'* (**2**) and *N*,*N*dimethylglycinato- $\kappa^2 O$, *O'* ligand (**4**).

© 2006 Elsevier B.V. All rights reserved.

Keywords: Titanium complexes; α -Amino acid; Malonic acid; $\kappa^2 O, O'$ coordination; ESI-MS; Crystal structure

1. Introduction

Titanium and its coordination compounds become ever more important in medicine especially due to the antitumor activity of some titanium complexes such as *cis*-diethoxybis(1-phenylbutane-1,3-dionato)titanium(IV) ("*Budotitane*") [1]. Furthermore, due to the relative low toxicity of the $[Ti(cp)_2]^{2+}$ unit $(cp = \eta^5-C_5H_5)$, titanocene dichloride $[Ti(cp)_2Cl_2]$ is a leading substance in the class of antitumor bis(cyclopentadienyl)metal complexes [2,3]. To understand the mode of operation it is useful to synthesize titanium complexes with bioligands.

Thus, coordination compounds of titanium with amino acid ligands came into the focus of interest [4,5]. Overall, only a few complexes could be structurally characterized, namely the complexes $[{Ti(OEt)_2(OOCCH_2NH_2-\kappa^2 O, N)}_2 (\mu-EtO)_{2}$ [6], [Ti(C₅H₄Me)₂(OOCCH₂NMeH₂- κ O)₂]Cl₂ [7] and $[Ti(cp)_2(Haa-\kappa O)_2]Cl_2$ (Haa = L-methionine [8], 2methylalanine [9]). Bis(cyclopentadienyl)titanium complexes with amino acid ligands have been prepared mainly by reactions of $[Ti(cp)_2Cl_2]$ with amino acids or their alkaline salts in protic solvents [10]. To the best of our knowledge, the complex $[Ti(cp^*)_2(BTMSA)]$ (1) $(cp^* = \eta^5 - C_5Me_5)$, BTMSA = bis(trimethylsilyl)acetylene) has not yet been used as starting complex for the synthesis of dicarboxylato and amino acid complexes although complex 1 proved to be easily accessible and was found to undergo a broad variety of reactions especially C-C coupling reactions with alkynes

^{*} Corresponding author. Tel.: 49 345 5525620.

E-mail address: dirk.steinborn@chemie.uni-halle.de (D. Steinborn).

and alkenes [11,12]. Furthermore, reactions of **1** with water or methanol proceeded with the formation of hydroxy or methoxy complexes of titanium(IV) [13]. Here, we report the reactivity of [Ti(cp^{*})₂(BTMSA)] (**1**) with malonic acids (HOOC)₂CR₂ ($\mathbf{R} = \mathbf{H}$, Me) and with the α -amino acid *N*,*N*-dimethylglycine yielding malonato titanium(IV) complexes and, unexpectedly, a *N*,*N*-dimethylglycinato titanium(III) complex, respectively, being the first structurally characterized titanium(III) α -amino acid complex.

2. Results and discussion

2.1. Syntheses and characterization

 $[Ti(cp^*)_2(BTMSA)]$ (1) was found to react with malonic acid and dimethylmalonic acid in tetrahydrofuran at room temperature yielding the malonato titanium(IV) complexes 2 and 3, respectively (Scheme 1). Complexes 2 and 3 were obtained in good yields as brown-reddish small crystals that can be handled on air for a short time. On the other hand, the reaction of $[Ti(cp^*)_2(BTMSA)](1)$ with N,N-dimethylglycine in benzene at room temperature yielding the N,Ndimethylglycinato titanium(III) complex 4 (Scheme 1). Complex 4 was obtained in 60% yield as grass-green powder that underwent decomposition on air within seconds forming a yellowish-brown powder. As revealed by GC-MS experiments of the reaction solutions, the BTMSA ligand is not only simply cleaved off yielding Me₃SiC=CSiMe₃ (5) but also the corresponding alkenes (E)- and (Z)-Me₃SiCH=CHSiMe₃ (6). Forming complexes 2 and 3, the ratios $5:(Z)-6 \approx 6-8:10$ were found, whereas in reaction solution of 4 ratio $5:(Z)-6:(E)-6 \approx 10:1:0.3$ was found.

The identities of the complexes 2 and 3 were confirmed by microanalysis, thermogravimetry, ESI mass spectrometry, NMR and IR spectroscopy as well as by single-crystal X-ray diffraction analysis (2). Both in the ¹H and ¹³C NMR spectra, the cp^* ligands exhibited singlet resonances in the expected range [14]. The intensities of the cp^* protons and those of the malonato ligands gave evidence for the 2:1 stoichiometry of the complexes that indicates the chelate bonding ($\kappa^2 O, O'$) of the malonato ligands as it was definitely proved by the structural investigation of **2**. The coordination of the malonato ligands is also reflected in the shift of the v_{CO} vibrations of the malonato ligands from 1740/1717 cm⁻¹ to 1655/1628 cm⁻¹ for complex **2** and from 1705/1696 cm⁻¹ to 1595/1562 cm⁻¹ for **3**.

Thermogravimetric investigations on 2 and 3 exhibited a different thermal stability. The decomposition starts at ca. 190 °C (2) and 100 °C (3) in an exothermic step likely with the loss of the cp* ligands. Mass spectra of the two malonato complexes 2 and 3 were obtained by ESI-MS analyses using solutions of the complexes in methanol. In both cases the mass peaks of the protonated molecular cations $[Ti(cp^*)_2\{(OOC)_2CR_2\}]H^+$ (R = H, 2; R = Me, 3) were detected as the most intensive peaks in the spectra¹, showing an isotopic envelope characteristic of monocations containing one titanium atom [natural isotopic composition: ⁴⁶Ti (8.0%), ⁴⁷Ti (7.3%), ⁴⁸Ti (73.8%), ⁴⁹Ti (5.5%) and ⁵⁰Ti (5.4%)]. The observed values are in good agreement with the calculated ones. Furthermore, collision-induced dissociation (CID) experiments of the isolated parent ions (see Fig. 1 for 3 as an example) showed a stepwise fragmentation by the loss of malonic acid anhydride and water yielding the daughter ions 7 and 8 (Scheme 2). The further dissociation of the daughter ion 7 (m/z 335) to the product ion 8 (m/z 317) was confirmed by independent MS³ experiments, showing the exclusive formation of 8 from isolated 7 under CID conditions. Most likely, complex cation 8 is a $\eta^5:\eta^1$ -(tetramethylfulvene)titanium(IV) cation [Ti(cp*)(η^5 : η^1 -C₅Me₄CH₂)]⁺. Complexes of this type are well known, both of titanium(III) ([Ti(cp^{*})($\eta^5:\eta^1-C_5Me_4CH_2$)] [15]) and titanium(IV) ([Ti(cp^{*})(η^5 : η^1 -C₅Me₄CH₂)Cl] [16]).

 $^{^1}$ Cations of type $[M{+}Na]^+$ and clusters ([2M+H]^+, [2M+Na]^+) were also detected.

Download English Version:

https://daneshyari.com/en/article/1311731

Download Persian Version:

https://daneshyari.com/article/1311731

Daneshyari.com