Inorganica Chimica Acta 427 (2015) 188-197

Contents lists available at ScienceDirect

Inorganica Chimica Acta

journal homepage: www.elsevier.com/locate/ica

Anion influences on the solid state coordination chemistry of copper–bispyrazole materials

Wayne Ouellette, Jonathan Gooch, Stephanie Luquis, Jon Zubieta*

Department of Chemistry, Syracuse University, Syracuse, NY 13244, United States

ARTICLE INFO

Article history: Received 23 September 2014 Received in revised form 3 December 2014 Accepted 5 December 2014 Available online 23 December 2014

Keywords: Crystal structures Coordination polymers Copper–bipyrazoles Anion coordination

ABSTRACT

The reactions of the p-xylene-bridged and methylene-bridged bipyrazolyl ligands 1,4-bis[(3',5'-dimethyl-1H-pyrazole-4'-yl)]methylene]benzene (xdpH₂) and bis[(3',5'-dimethyl-1H-pyrazole-4'-yl)]methane (mdpH₂) with the appropriate copper salt have provided eight unique members of the Cu/bipyrazole/X system with X = Cl⁻, Br⁻, I⁻ and SO₄²⁻. The anionic component of [Cu(xdpH₂)(H₂O)]Cl·H₂O (1·H₂O) acts as a simple charge-compensating counterion. In contrast, the anionic units of [Cu(xdpH₂)Cl₂]-2DMF (2·2DMF), [Cu(xdpH₂)Cl₂(DMF)]·DMF (3·DMF), [Cu₂(xdpH₂)₂Br₂] (4), [Cu(mdpH₂)Br₂] (5), [Cu₄(xdpH₂)₄I₄] (6), [Cu₂(xdpH₂)₂(SO₄)]·H₂O (7·H₂O) and [Cu₂(xdpH₂)₂(SO₄)]·2H₂O (8·2H₂O) are involved in bonding to the copper sites. Compounds 1, 4, and 6–8 contain Cu(1) sites while compounds 2, 3, and 5 are polymers of Cu(11). Compounds 1–5 and 7 are one-dimensional, while 8 is two-dimensional and 6 is three-dimensional. Considering the {Cu₄I₄} clusters of 6 as nodes, the structure is a fivefold interpenetrated framework with individual networks adopting the common {3³.12³} topology in Schlafli notation.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

One significant focus of solid state coordination chemistry is the design of materials composed of metal or metal cluster centers connected through di- or polytopic ligands. Such materials are characterized by unique structural chemistry and applications to areas that include sorption, catalysis, optical materials and magnetism [1-8].

Through the efforts of investigators such as Yaghi [9–11], Ferey [12,13], Kitagawa [14,15], Clearfield [16] and others [17–22], metal organic frameworks constructed from polyfunctional carboxylate, polypyridyl and organophosphonate ligands have witnessed significant development. In addition to these ligand types, polyazoheteroaromatic ligands such as imidazole, pyrazole, triazole, tetrazole and their derivatives have also been exploited for their ability to bridge multiple metal sites and to provide superexchange in the design of materials with interesting magnetic properties [23–37].

In our investigations of coordination polymers, we focused on aspects of materials incorporating triazolate and tetrazolate ligands and their derivatives [38–55]. By introducing tethering groups between the azolate units, considerable flexibility in spatial dimensions, as well as a significant expansion in the structural chemistry of the coordination polymers, could be achieved (Scheme 1). Based

on our observations of the structural chemistry of metal-phenyl-bis tetrazole and aminophenyl-tetrazole complexes, we expanded our investigations to the related bis-pyrazole chemistry.

The pyrazole ligand itself can act as a monodentate ligand or upon deprotonation as a monodentate or an *endo*-bidentate (η^2) or an *exo*-bidentate bridging ligand $(\eta^1 - \eta^1)$ [56–60]. The coordination chemistry of multi-dimensional structures may be expanded through the design of bitopic rod-like bispyrazoles such as 4,4'bipyrazole, which has been used in the construction of a number of meal organic frameworks [61–71]. However, further expansion of this chemistry may be achieved by insertion of tethering groups of variable lengths and functionalities, as previously noted for tetrazole-based materials [48]. As an extension of the metal-pyrazole and metal-bispyrazole chemistry, we have investigated a series of one-, two- and three-dimensional materials of copper incorporating the methylene-[bis-(1H-pyrazol-4'-yl)](mdpH₂) and xylyl-[bis-(3'-5'-dimethyl-1H-pyrazol-4'-yl)] (xdpH₂) ligands. Since we had previously noted for the Cu/triazole/X system, where X is an anionic component such as cyanide, halide, or an inorganic oxide, that anion identity dramatically influenced the structure and properties of the composite materials, variations in anion identity for the Cu/bispyrazole/X system were explored for $X = CI^{-}$, Br^{-} , I^{-} and SO_4^{2-} . Since the ligands may be present in the neutral form or as the deprotonated pyrazolate, reaction conditions were chosen so as to favor neutral ligand modality. Under these conditions, seven copper-based coordination polymers of xdpH₂ were isolated

CrossMark

Landon Contraction

^{*} Corresponding author. Tel.: +1 315 443 2547; fax: +1 315 443 4070. E-mail address: jazubiet@syr.edu (J. Zubieta).

Scheme 1. The tetrazole ligand, tethered bis-tetrazole ligands and the bis-pyrazole ligand xdpH₂ of this study.

and structurally characterized: the one-dimensional [Cu(xdpH₂) (H₂O)]Cl(1), [Cu(xdpH₂)Cl₂]·2DMF (**2**·2DMF), [Cu(xdpH₂)Cl₂ (DMF)]·DMF (**3**·DMF), [Cu₂(xdpH₂)₂Br₂] (**4**), and [Cu₂(xdpH₂)₂ (SO₄)]·H₂O (**7**·H₂O); the two-dimensional [Cu₂(xdpH₂)₂(SO₄)]·2H₂O (**8**·2H₂O); and the three-dimensional [Cu₄(xdpH₂)] (**6**). A single example incorporating the mdpH ligand, [Cu(mdpH₂)₂Br₂] (**5**) was isolated.

2. Experimental

2.1. General procedures

All chemicals were used as obtained without further purification with the exception of bis-[(3',5'-dimethyl-1H-pyrazole-4'-yl)]methane (mdpH₂) and 1,4-bis-[(3',5'-dimethyl-1H-pyrazole-4'-yl)methylene]benzene (xdpH₂) which were synthesized in a similar fashion to the literature method [72–75]. Copper salts were purchased from Sigma–Aldrich. All syntheses were carried out in 23-mL poly(tetrafluoroethylene)-lined stainless steel containers under autogeneous pressure. The pH values of the solutions were measured prior to and after heating using pHydrion vivid 1-11[®] pH paper. Water was distilled above 3.0 M Ω in-house using a Barnstead Model 525 Biopure Distilled Water Center.

2.2. Synthesis of $[Cu(xdpH_2)(H_2O)]Cl \cdot H_2O$ (1 · H₂O)

A solution of copper(II) chloride (0.064 g, 0.48 mmol), xylylbis(3,5-dimethylpyrazole) (0.200 g, 0.68 mmol), HF (48%, 0.1 mL) and H₂O (10.0 g, 556 mmol) in the mole ratio 1.0:1.42:5.8:1160 was stirred briefly before heating to 150 °C for 48 h. Yellow crystals of **1** were isolated in 40% yield. IR (KBr pellet, cm⁻¹): 3209 (m, N–H), 3018 (m), 2913 (m), 1578 (w, C=C + C=N), 1511(w, C=C + C=N). Anal. Calc. for $C_{18}H_{26}CICuN_4O_2$: C, 50.3; H, 6.05; N, 13.0. Found: C, 50.0; H, 6.23; N, 12.9%.

Table 1

Summary of crystallographic data for the structures of $[Cu(xdpH_2)(H_2O)]Cl\cdot H_2O$ (1), $[Cu(xdpH_2)Cl_2]\cdot 2DMF$ (2·2DMF), $[Cu(xdpH_2)Cl_2(DMF)]\cdot DMF$ (3·DMF), $[Cu_2(xdpH_2)_2Br_2]$ (4), $[Cu(mdpH_2)_2Br_2]$ (5), $[Cu_2(xdpH_2)_2(SO_4)]\cdot H_2O$ (7·H₂O) and $[Cu_2(xdpH_2)_2(SO_4)]\cdot H_2O$ (8·2H₂O).

	1	2	3	4
Empirical formula	$C_{18}H_{26}ClCuN_4O_2$	$C_{24}H_{36}Cl_2CuN_6O_2$	$C_{24}H_{36}Cl_2CuN_6O_2$	$C_9H_{11}BrCuN_2$
Formula weight	429.42	575.03	575.03	290.65
Crystal system	monoclinic	triclinic	monoclinic	triclinic
Space group	C2/c	PĪ	$P2_1/n$	ΡĪ
a (Å)	13.388(3)	86874(7)	12.8466(5)	4.5776(6)
b (Å)	29.031(6)	8.7747(7)	14.4677(6)	9.2930(11)
<i>c</i> (Å)	4.771(1)	9.3138(7)	14.4823(6)	11.987(1)
α (°)	90.	87.585(1)	90.	82.200(2)
β (°)	102.010(4)	82.471(1)	94.35(1)	84.840(2)
δ (°)	90.	73.597(1)	90.	76.620(2)
$V(A^3)$	1813.5(6)	675.21(9)	2683.9(2)	490.6(1)
Z	4	2	4	2
D_{calc} (g cm ⁻³)	1.573	1.414	1.423	1.968
$\mu (\text{mm}^{-1})$	1.373	1.039	1.046	6.249
$T(\mathbf{K})$	98(2)	98(2)	98(2)	98(2)
Wavelength (A)	0.71073	0.71073	0.71073	0.71073
K_1	0.0667	0.0324	0.0319	0.0413
WR2 ⁻	0.1819	0.0831	0.0829	0.1100
	5	C	7	0
	3	0	7	0
Empirical formula	$C_{14}H_{16}Br_2CuN_8$	C ₉ H ₁₁ CulN ₂	C ₃₆ H ₄₆ Cu ₂ N ₈ O ₅ S	8 C ₃₆ H ₄₈ Cu ₂ N ₈ O ₆ S
Empirical formula Formula weight	C ₁₄ H ₁₆ Br ₂ CuN ₈ 519.70	C ₉ H ₁₁ CulN ₂ 337.64	C ₃₆ H ₄₆ Cu ₂ N ₈ O ₅ S 829.94	8 C ₃₆ H ₄₈ Cu ₂ N ₈ O ₆ S 847.98
Empirical formula Formula weight Crystal system	C ₁₄ H ₁₆ Br ₂ CuN ₈ 519.70 monoclinic	0 C ₉ H ₁₁ CulN ₂ 337.64 tetragonal	C ₃₆ H ₄₆ Cu ₂ N ₈ O ₅ S 829.94 monoclinic	o C ₃₆ H ₄₈ Cu ₂ N ₈ O ₆ S 847.98 orthorhombic
Empirical formula Formula weight Crystal system Space group	C ₁₄ H ₁₆ Br ₂ CuN ₈ 519.70 monoclinic P2 ₁ /c	c ₉ H ₁₁ CuIN ₂ 337.64 tetragonal I4 ₁ /a	C ₃₆ H ₄₆ Cu ₂ N ₈ O ₅ S 829.94 monoclinic C2/c	o C ₃₆ H ₄₈ Cu ₂ N ₈ O ₆ S 847.98 orthorhombic Fddd
Empirical formula Formula weight Crystal system Space group a (Å)	C ₁₄ H ₁₆ Br ₂ CuN ₈ 519.70 monoclinic <i>P</i> 2 ₁ / <i>c</i> 7.180(1)	C ₉ H ₁₁ CulN ₂ 337.64 tetragonal <i>I</i> 4 ₁ / <i>a</i> 15.4451(4)	C ₃₆ H ₄₆ Cu ₂ N ₈ O ₅ S 829.94 monoclinic C2/c 17.897(3)	o C ₃₆ H ₄₈ Cu ₂ N ₈ O ₆ S 847.98 orthorhombic <i>Fddd</i> 4.5151(5)
Empirical formula Formula weight Crystal system Space group a (Å) b (Å)	C ₁₄ H ₁₆ Br ₂ CuN ₈ 519.70 monoclinic P2 ₁ /c 7.180(1) 14.241(3)	o C ₉ H ₁₁ CuIN ₂ 337.64 tetragonal H ₁ /a 15.4451(4) 15.4451(4)	C ₃₆ H ₄₆ Cu ₂ N ₈ O ₅ S 829.94 monoclinic C2/c 17.897(3) 17.983(3)	o C ₃₆ H ₄₈ Cu ₂ N ₈ O ₆ S 847.98 orthorhombic Fddd 4.5151(5) 26.511(3)
Empirical formula Formula weight Crystal system Space group a (Å) b (Å) c (Å)	C ₁₄ H ₁₆ Br ₂ CuN ₈ 519.70 monoclinic <i>P</i> 2 ₁ / <i>c</i> 7.180(1) 14.241(3) 8.879(2)	C ₉ H ₁₁ CuIN ₂ 337.64 tetragonal 14 ₁ /a 15.4451(4) 15.4451(4) 15.4451(4) 17.1881(9)	C ₃₆ H ₄₆ Cu ₂ N ₈ O ₅ S 829.94 monoclinic C2/c 17.897(3) 17.983(3) 14.680(3)	o C ₃₆ H ₄₈ Cu ₂ N ₈ O ₆ S 847.98 orthorhombic Fddd 4.5151(5) 26.511(3) 61.100(6)
Empirical formula Formula weight Crystal system Space group a (Å) b (Å) c (Å) α (°)	C ₁₄ H ₁₆ Br ₂ CuN ₈ 519.70 monoclinic <i>P</i> 2 ₁ / <i>c</i> 7.180(1) 14.241(3) 8.879(2) 90.	C ₉ H ₁₁ CuIN ₂ 337.64 tetragonal I4 ₁ /a 15.4451(4) 15.4451(4) 15.4451(4) 17.1881(9) 90.	C ₃₆ H ₄₆ Cu ₂ N ₈ O ₅ S 829.94 monoclinic C2/c 17.897(3) 17.983(3) 14.680(3) 90.	b C ₃₆ H ₄₈ Cu ₂ N ₈ O ₆ S 847.98 orthorhombic Fddd 4.5151(5) 26.511(3) 61.100(6) 90.
Empirical formula Formula weight Crystal system Space group a (Å) b (Å) c (Å) α (°) β (°)	C ₁₄ H ₁₆ Br ₂ CuN ₈ 519.70 monoclinic <i>P</i> 2 ₁ / <i>c</i> 7.180(1) 14.241(3) 8.879(2) 90. 103.428(4)	C ₉ H ₁₁ CuIN ₂ 337.64 tetragonal I4 ₁ /a 15.4451(4) 15.4451(4) 17.1881(9) 90. 90.	C ₃₆ H ₄₆ Cu ₂ N ₈ O ₅ S 829.94 monoclinic C2/c 17.897(3) 17.983(3) 14.680(3) 90. 127.56	o C ₃₆ H ₄₈ Cu ₂ N ₈ O ₆ S 847.98 orthorhombic Fddd 4.5151(5) 26.511(3) 61.100(6) 90.
Empirical formula Formula weight Crystal system Space group a (Å) b (Å) c (Å) a (°) β (°) δ (°)	C ₁₄ H ₁₆ Br ₂ CuN ₈ 519.70 monoclinic P2 ₁ /c 7.180(1) 14.241(3) 8.879(2) 90. 103.428(4) 90.	0 C9H11CulN2 337.64 tetragonal 141/a 15.4451(4) 15.4451(4) 17.1881(9) 90. 90. 90.	C ₃₆ H ₄₆ Cu ₂ N ₈ O ₅ S 829.94 monoclinic C2/c 17.897(3) 17.983(3) 14.680(3) 90. 127.56 90.	B C ₃₆ H ₄₈ Cu ₂ N ₈ O ₆ S 847.98 orthorhombic Fddd 4.5151(5) 26.511(3) 61.100(6) 90. 90. 90.
Empirical formula Formula weight Crystal system Space group a (Å) b (Å) c (Å) α (°) β (°) δ (°) V (Å ³)	C ₁₄ H ₁₆ Br ₂ CuN ₈ 519.70 monoclinic P2 ₁ /c 7.180(1) 14.241(3) 8.879(2) 90. 103.428(4) 90. 883.1(3)	C ₉ H ₁₁ CulN ₂ 337.64 tetragonal <i>I</i> 4 ₁ /a 15.4451(4) 15.4451(4) 17.1881(9) 90. 90. 90. 90. 90.	C ₃₆ H ₄₆ Cu ₂ N ₈ O ₅ S 829.94 monoclinic C2/c 17.897(3) 17.983(3) 14.680(3) 90. 127.56 90. 3745.6(1)	B C ₃₆ H ₄₈ Cu ₂ N ₈ O ₆ S 847.98 orthorhombic Fddd 4.5151(5) 26.511(3) 61.100(6) 90. 90. 90. 90. 90.
Empirical formula Formula weight Crystal system Space group a (Å) b (Å) c (Å) c (Å) α (°) β (°) δ (°) V (Å ³) Z	C ₁₄ H ₁₆ Br ₂ CuN ₈ 519.70 monoclinic P2 ₁ /c 7.180(1) 14.241(3) 8.879(2) 90. 103.428(4) 90. 883.1(3) 2	C ₉ H ₁₁ CulN ₂ 337.64 tetragonal H ₁ /a 15.4451(4) 15.4451(4) 17.1881(9) 90. 90. 90. 90. 90. 4100.2(3) 16	C ₃₆ H ₄₆ Cu ₂ N ₈ O ₅ S 829.94 monoclinic C2/c 17.897(3) 17.983(3) 14.680(3) 90. 127.56 90. 3745.6(1) 4	B C ₃₆ H ₄₈ Cu ₂ N ₈ O ₆ S 847.98 orthorhombic Fddd 4.5151(5) 26.511(3) 61.100(6) 90. 90. 7313.5(13) 8
Empirical formula Formula weight Crystal system Space group a (Å) b (Å) c (Å) α (°) β (°) δ (°) V (Å ³) Z D_{calc} (g cm ⁻³) (2m-1)	C ₁₄ H ₁₆ Br ₂ CuN ₈ 519.70 monoclinic P2 ₁ /c 7.180(1) 14.241(3) 8.879(2) 90. 103.428(4) 90. 883.1(3) 2 1.955 5 777	C ₉ H ₁₁ CuIN ₂ 337.64 tetragonal H ₁ /a 15.4451(4) 15.4451(4) 17.1881(9) 90. 90. 90. 90. 90. 90. 90. 90. 90. 90.	C ₃₆ H ₄₆ Cu ₂ N ₈ O ₅ S 829.94 monoclinic C2/c 17.897(3) 17.983(3) 14.680(3) 90. 127.56 90. 3745.6(1) 4 1.472	B C ₃₆ H ₄₈ Cu ₂ N ₈ O ₆ S 847.98 orthorhombic Fddd 4.5151(5) 26.511(3) 61.100(6) 90. 90. 90. 90. 90. 90. 91.5(13) 8 1.537 1.270
Empirical formula Formula weight Crystal system Space group a (Å) b (Å) c (Å) α (°) β (°) δ (°) V (Å ³) Z D_{calc} (g cm ⁻³) μ (mm ⁻¹) T (U)	C ₁₄ H ₁₆ Br ₂ CuN ₈ 519.70 monoclinic P2 ₁ /c 7.180(1) 14.241(3) 8.879(2) 90. 103.428(4) 90. 883.1(3) 2 1.955 5.777 99(2)	0 C ₉ H ₁₁ CuIN ₂ 337.64 tetragonal I4 ₁ /a 15.4451(4) 15.4451(4) 17.1881(9) 90. 90. 90. 90. 90. 91. 16 2.188 5.096 09(2)	C ₃₆ H ₄₆ Cu ₂ N ₈ O ₅ S 829.94 monoclinic C2/c 17.897(3) 17.983(3) 14.680(3) 90. 127.56 90. 3745.6(1) 4 1.472 1.245 09(2)	B C ₃₆ H ₄₈ Cu ₂ N ₈ O ₆ S 847.98 orthorhombic Fddd 4.5151(5) 26.511(3) 61.100(6) 90. 90. 90. 7313.5(13) 8 1.537 1.278 02(2)
Empirical formula Formula weight Crystal system Space group a (Å) b (Å) c (Å) α (°) β (°) δ (°) V (Å ³) Z D_{calc} (g cm ⁻³) μ (mm ⁻¹) T (K) Wowleagth (Å)	C ₁₄ H ₁₆ Br ₂ CuN ₈ 519.70 monoclinic P2 ₁ /c 7.180(1) 14.241(3) 8.879(2) 90. 103.428(4) 90. 883.1(3) 2 1.955 5.777 98(2) 0.71072	0 C ₉ H ₁₁ CuIN ₂ 337.64 tetragonal I4 ₁ /a 15.4451(4) 15.4451(4) 17.1881(9) 90. 91. 92. 93. 16 2.188 5.096 98(2) 0.71022	C ₃₆ H ₄₆ Cu ₂ N ₈ O ₅ S 829.94 monoclinic C2/c 17.897(3) 17.983(3) 14.680(3) 90. 127.56 90. 3745.6(1) 4 1.472 1.245 98(2) 9.71072	o C ₃₆ H ₄₈ Cu ₂ N ₈ O ₆ S 847.98 orthorhombic Fddd 4.5151(5) 26.511(3) 61.100(6) 90. 90. 90. 90. 90. 91. 7313.5(13) 8 1.537 1.278 98(2) 0.71072
Empirical formula Formula weight Crystal system Space group a (Å) b (Å) c (Å) α (°) β (°) δ (°) V (Å ³) Z D_{calc} (g cm ⁻³) μ (mm ⁻¹) T (K) Wavelength (Å) P a	C ₁₄ H ₁₆ Br ₂ CuN ₈ 519.70 monoclinic P2 ₁ /c 7.180(1) 14.241(3) 8.879(2) 90. 103.428(4) 90. 883.1(3) 2 1.955 5.777 98(2) 0.71073 0.0418	0 C ₉ H ₁₁ CuIN ₂ 337.64 tetragonal I4 ₁ /a 15.4451(4) 15.4451(4) 17.1881(9) 90. 91. 92. 93. 94. 95.0 98(2) 0.71073 0.9252	C ₃₆ H ₄₆ Cu ₂ N ₈ O ₅ S 829.94 monoclinic C2/c 17.897(3) 17.983(3) 14.680(3) 90. 127.56 90. 3745.6(1) 4 1.472 1.245 98(2) 0.71073 0.0440	o C ₃₆ H ₄₈ Cu ₂ N ₈ O ₆ S 847.98 orthorhombic Fddd 4.5151(5) 26.511(3) 61.100(6) 90. 90. 90. 90. 90. 91. 7313.5(13) 8 1.537 1.278 98(2) 0.71073 0.9620
Empirical formula Formula weight Crystal system Space group a (Å) b (Å) c (Å) a (°) β (°) β (°) γ (Å) Z D _{calc} (g cm ⁻³) μ (mm ⁻¹) T (K) Wavelength (Å) R_i^a we b	C ₁₄ H ₁₆ Br ₂ CuN ₈ 519.70 monoclinic P2 ₁ /c 7.180(1) 14.241(3) 8.879(2) 90. 103.428(4) 90. 883.1(3) 2 1.955 5.777 98(2) 0.71073 0.0418 0.0875	0 C ₉ H ₁₁ CuIN ₂ 337.64 tetragonal I4 ₁ /a 15.4451(4) 15.4451(4) 17.1881(9) 90. 90. 90. 90. 90. 90. 90. 90. 90. 90. 90. 90. 90. 90. 90. 90. 90. 90. 91. 92. 93. 93. 94. 93. 94. 94. 95. 95. 96. 98. 99. 99. 90. 93. 94. 95. 96. 97. 97. 97. 97. 97. <td>C₃₆H₄₆Cu₂N₈O₅S 829.94 monoclinic C2/c 17.897(3) 17.983(3) 14.680(3) 90. 127.56 90. 3745.6(1) 4 1.472 1.245 98(2) 0.71073 0.0449 0.0059</td> <td>o C₃₆H₄₈Cu₂N₈O₆S 847.98 orthorhombic Fddd 4.5151(5) 26.511(3) 61.100(6) 90. 90. 90. 90. 90. 91.537 1.278 98(2) 0.71073 0.0629 0.1554</td>	C ₃₆ H ₄₆ Cu ₂ N ₈ O ₅ S 829.94 monoclinic C2/c 17.897(3) 17.983(3) 14.680(3) 90. 127.56 90. 3745.6(1) 4 1.472 1.245 98(2) 0.71073 0.0449 0.0059	o C ₃₆ H ₄₈ Cu ₂ N ₈ O ₆ S 847.98 orthorhombic Fddd 4.5151(5) 26.511(3) 61.100(6) 90. 90. 90. 90. 90. 91.537 1.278 98(2) 0.71073 0.0629 0.1554

^a $R_1 = \sum |F_0| - |F_c| / \sum |F_0|$.

^b $wR_2 = \{[w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2] \}^{1/2}.$

Download English Version:

https://daneshyari.com/en/article/1312106

Download Persian Version:

https://daneshyari.com/article/1312106

Daneshyari.com