Contents lists available at ScienceDirect

Inorganica Chimica Acta

journal homepage: www.elsevier.com/locate/ica

Alkyl dehydrogenation in iridium tri-cyclopentyl phosphines

Séverine Moret¹, Romaeo Dallanegra, Adrian B. Chaplin, Thomas M. Douglas, Rachel M. Hiney, Andrew S. Weller^{*}

Department of Inorganic Chemistry, University of Oxford, Oxford OX1 3QR, United Kingdom

ARTICLE INFO

ABSTRACT

Article history: Received 14 December 2008 Received in revised form 25 February 2009 Accepted 1 March 2009 Available online 13 March 2009

Dedicated to Paul Pregosin.

Keywords: Phosphine Alkene Iridium Dehydrogenation Anion The iridium cyclooctadiene complex incorporating a tricyclopentyl phosphine ligand (PCyp₃), $Ir(\eta^2:\eta^2-C_8H_{12})(PCyp_3)Cl$, has been prepared. Removal of the chloride from this complex using Na[BAr^F₄][Ar^F = C₆H₃(CF₃)₂] in CH₂Cl₂/arene solvent results in dehydrogenation (C–H activation followed by β -H transfer) of one of the alkyl phosphine rings and formation of the complexes $[Ir(\eta^6-C_6H_5X){PCyp_2(\eta^2-C_5H_7)}][BAr^F_4](X = H, F)$ which contain a hybrid phosphine–alkene ligand. These complexes are formed alongside another product (5–20% yield) that has been identified as $[Ir(\eta^2:\eta^2-C_8H_{12}){PCyp_2(\eta^2-C_5H_7)}][BAr^F_4]$, which can be prepared in high yield by an alternative, and slightly modified, route. This complex is with a minor isomer that has been tentatively identified as $[Ir(\eta^2:\eta^3-C_8H_{11})(H){PCyp_2(\eta^2-C_5H_7)}][BAr^F_4]$, which results from allylic C–H activation of cyclooctadiene. Addition of H₂ to $[Ir(\eta^2:\eta^2-C_8H_{12}){PCyp_2(\eta^2-C_5H_7)}][BAr^F_4]$, which results from allylic C–H activation of cyclooctadiene. Addition of H₂ to $[Ir(\eta^2:\eta^2-C_8H_{12}){PCyp_2(\eta^2-C_5H_7)}][BAr^F_4]$, which results from allylic C–H activation of cyclooctadiene. Addition of H₂ to $[Ir(\eta^2:\eta^2-C_8H_{12}){PCyp_2(\eta^2-C_5H_7)}][BAr^F_4]$ and its isomer in arene solvent (C₆H₅X, X = F, H) forms the dihydrido η^6 -arene Ir(III) complexes [Ir(H)₂($\eta^6-C_6H_5X)(PCyp_3)$][BAr^F₄] in contrast, hydrogenation in CH₂Cl₂ alone results in the formation of Ir(H)₂(PCyp₃){ $\eta^6-(C_6H_3C)(PCyp_3)$][BAr^F₄] can be cleanly converted to $[Ir(\eta^6-C_6H_5F){PCyp_2(\eta^2-C_5H_7)}]$ [BAr^F₄] and its aryl rings. The fluorobenzene complex [Ir(H)₂($\eta^6-C_6H_5F)$ {PCyp₂($\eta^2-C_5H_7$)}][BAr^F₄] can be cleanly converted to $[Ir(\eta^6-C_6H_5F){PCyp_2(\eta^2-C_5H_7)}]$ [BAr^F₄] by addition of the hydrogen acceptor *tert*-butylethene (tbe).

© 2009 Elsevier B.V. All rights reserved.

Inorganica Chimica Acta

1. Introduction

Hybrid phosphine-alkene ligands are receiving increased attention due to the role that they play in homogeneous catalysis, given the enhanced selectivity and reactivity that they promote when complexed with a metal centre [1]. Examples include: dehydrogenative silvlation [2], functionalisation of nitrogen heterocycles via C-H activation [3], hydrogenation of imines [4], 1,4-addition reactions [5,6], Suzuki-Miyaura reactions [7] and allylic substitutions [8]. Such ligands can be prepared via standard chemical routes, but an attractive alternate methodology is to prepare the ligands in situ by a dehydrogenation procedure, which also furnishes an active metal complex with the ligand of interest. Indeed it has recently been demonstrated by Ellman. Bergman and co-workers that in situ dehydrogenation of cyclic phosphines can lead to a significantly more active and stable catalysts for C-H activation reactions [3]. Dehydrogenation of coordinated ligands is well established, and examples involving Ru [9], Rh [3,10-12], Re [13], Os [14], Ir [11,12,15] and Pt [16] have been reported. We, concurrently but independent to Sabo-Etienne and co-workers, have reported upon the late transition-metal chemistry of tricyclopentyl

phosphine, PCyp₃ [17,18], that can undergo dehydrogenation when complexed with a metal, to form phosphine–alkene ligands preorganised on Ru [19,20] or Rh [6,21–23] centres (*e.g.* Scheme 1). In some cases the dehydrogenation is fully reversible, in that addition of H₂ hydrogenates the double bond to form a phosphine with a saturated backbone, which can then itself undergo dehydrogenation to re-establish the phosphine–alkene ligand coordinated to the metal centre [20–22]. Grützmacher and co-workers have also reported reversible dehydrogenation in cyclic phosphine systems complexed with iridium (Scheme 1) [24].

We report here an extension to our recent studies using rhodium-PCyp₃ materials to encompass iridium complexes. Low valent iridium complexes are known to be active alkane dehydrogenation catalysts [25] and we anticipated that dehydrogenation of the cyclic alkyl group in PCyp₃ would occur readily, leading to Ir(1) complexes containing a hybrid phosphine–alkene ligand.

2. Results and discussion

We have previously reported that removal of the chloride ligand in Rh(nbd)Cl(PCyp₃) using Na[BAr^F₄] {nbd = norbornadiene, Ar^F = C₆H₃(CF₃)₂} results in dehydrogenation of one of the PCyp₃ alkyl groups, with norbornadiene acting as a sacrificial hydrogen acceptor. If this reaction is performed in an arene solvent, such

^{*} Corresponding author.

E-mail address: andrew.weller@chem.ox.ac.uk (A.S. Weller).

¹ Visiting undergraduate student from EPFL, Switzerland.

^{0020-1693/\$ -} see front matter @ 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.ica.2009.03.004

Scheme 1. Selected examples of alkyl dehydrogenation in PCyp3 and related complexes of Rh [31], Ru [29] and Ir [24].

as C₆H₅F, an arene adduct is formed, *e.g.* [Rh(η^{6} -C₆H₅F) {PCyp₂(η^{2} -C₅H₇)}][BAr^F₄], (Scheme 1). By contrast, in CH₂Cl₂, where there is little stabilisation available from the solvent, a rare example of a complex with a coordinated [BAr^F₄]⁻ anion is formed, Rh{PCyp₂(η^{2} -C₅H₇)}{ η^{6} -(C₆H₃(CF₃)₂)BAr^F₃}, in which the metal's coordination sphere is completed by an η^{6} - π -interaction from the anion [23]. Following the same protocol, addition of Na[BAr^F₄] to the new, but straightforwardly synthesised, complex Ir(η^{2} : η^{2} -C₈H₁₂)Cl(PCyp₃) (1) resulted in the formation of three new compounds in a variable ratio that depended on the solvent used. These compounds have been identified by NMR spectroscopy and X-ray crystallography as [Ir(η^{6} -C₆H₅X){PCyp₂(η^{2} -C₅H₇)}][BAr^F₄] (X = H, **2**, or F, **3**) and the isomeric pair [Ir(η^{2} : η^{2} -C₈H₁₂){PCyp₂(η^{2} -C₅H₇)}][BAr^F₄] (**4a**) and [IrH(η^{2} : η^{3} -C₈H₁₁){PCyp₂(η^{2} -C₅H₇)}]

In benzene/CH₂Cl₂ solvent complex **2** is formed in 95% relative yield compared to **4a/b**, but could not be isolated in bulk form away from traces of **4a/b** by recrystallisation. The ¹H NMR spectrum of **2** shows a coordinated benzene ligand, δ 6.31, and an alkene that comes from dehydrogenation of the cyclopentyl ligand, δ 3.76, in a 6:2 relative integral ratio. The ³¹P{¹H} NMR spectrum shows a single environment, at δ 68.4, while the ¹³C{¹H} NMR spectrum is in full accord with the ¹H NMR spectrum, showing signals due to coordinated arene, free anion, and the phosphine–alkene ligand. A solid-state structure of **2** (Fig. 1) as determined by

a single crystal X-ray diffraction study confirms that dehydrogenation of one of the PCyp₃ alkyl rings has occurred, as well as coordination of the benzene solvent to give a formally Ir(I), 18-electron, metal centre. The bond lengths and angles around the metal centre are unremarkable, and not dissimilar to those reported for $[Rh(\eta^{6}-C_{6}H_{5}X){PCyp_{2}(\eta^{2}-C_{5}H_{7})}][BAr_{4}^{F}](X = H, F)$ [22]. Dissolution of the bulk crystalline sample showed that it was also contaminated with 4a/4b which clearly co-crystallises with 2. This was also confirmed by an ESI-MS of the crystalline material dissolved in CH₂Cl₂. Similarly, complex **3** could not be produced free of **4a/4b** by this method (80:20 relative ratio), but an alternative synthetic route produces **3** pure (*vide infra*) which allows for complete characterisation. The ¹H NMR spectrum for **3** is broadly similar to **2** and shows a coordinated fluorobenzene ligand [δ 6.47 (4H), 5.90 (1H)]. In the ¹³C¹H NMR spectrum the coordinated fluorobenzene is indicated by resonances observed at δ 141.7, 94.7, 88.7 and 82.9. Three resonances appear as doublets of doublets [¹⁹F and ³¹P coupling) while the one at δ 88.7 is simply a doublet and can also be correlated to the integral 1-H resonance in the ¹H NMR spectrum at δ 5.90. It is thus assigned to the *para*-{CH} group on the arene. The coordinated, dehydrogenated, cyclopentene ring is observed in the ¹H NMR spectrum at δ 3.81 (2-H) and in the ¹³C{¹H} NMR spectrum as a singlet at δ 45.8, with no ${}^{31}P-{}^{13}C$ coupling being observed. Finally, the ³¹P{¹H} NMR spectrum displays a single environment, at δ 69.2, that shows coupling to ¹⁹F [J(FP) 2.2 Hz], a

§ by NMR spectroscopy * isolated yield of 4a/4b

Scheme 2. Synthesis of 2, 3 and 4a/4b.

Download English Version:

https://daneshyari.com/en/article/1312653

Download Persian Version:

https://daneshyari.com/article/1312653

Daneshyari.com