

Available online at www.sciencedirect.com

Inorganica Chimica Acta 359 (2006) 2712-2720

www.elsevier.com/locate/ica

Inorganica

Iridium and rhodium complexes containing dichalcogenoimidodiphosphinato ligands

Wai-Man Cheung ^a, Chui-Ying Lai ^a, Qian-Feng Zhang ^a, Wai-Yeung Wong ^b, Ian D. Williams ^a, Wa-Hung Leung ^{a,*}

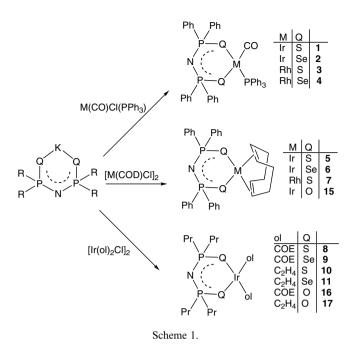
^a Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China ^b Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Kowloon, Hong Kong, PR China

> Received 26 September 2005; accepted 17 October 2005 Available online 29 November 2005

Dedicated to Professor Brain R. James on the occasion of his 70th birthday.

Abstract

Treatment of $[MCl(CO)(PPh_3)_2]$ with $K[N(R_2PQ)_2]$ afforded $[M\{N(Ph_2PQ)_2\}(CO)(PPh_3)]$ (M = Ir, Rh; Q = S, Se). The IR C=O stretching frequencies for $[M(CO)(PPh_3)\{N(Ph_2PQ)_2\}]$ were found to decrease in the order S > Se. Treatment of $[M(COD)Cl]_2$ with $K[N(Ph_2PQ)_2]$ afforded $[M(COD)\{N(Ph_2PQ)_2\}]$ (COD = 1,5-cyclooctadiene; M = Ir, Rh; Q = S, Se). Treatment of $[Ir(ol)_2Cl]$ with $K[N(Pr_2^{i}PQ)_2]$ afforded $[Ir(ol)_2\{N(Pr_2^{i}PQ)_2\}]$ (ol = cyclooctene COE, C_2H_4 ; Q = S, Se). Oxidative addition of $[Ir(CO)(PPh_3)\{N(Ph_2PS)_2\}]$ and trans- $[Ir(H)(Cl)(COD)\{N(Ph_2PS)_2\}]$ with HCl afforded $[Ir(H)(Cl)(CO)(PPh_3)\{N(Ph_2PS)_2\}]$ and trans- $[Ir(H)(Cl)(COD)\{N(Ph_2PS)_2\}]$. Treatment of $[Ir(CO2)_2Cl]_2$ with $K[N(R_2PO)_2]$ afforded $[Ir(CO2)_2\{N(Ph_2PO)_2\}]$ with MeI afforded $[Ir(MeD)(N(Ph_2PS)_2]]$. Treatment of $[Ir(CO2)_2(Me)(OTf)]$. The crystal structures of $[Ir(CO)(PPh_3)\{N(Ph_2PS)_2\}]$, $[M(COD)\{N(Ph_2PS)_2\}]$ (M = Ir, Rh), $[Ir(ol)_2\{N(Pr_2^{i}PS)_2\}](ol = COE, C_2H_4)$, trans- $[Ir(H)(Cl)(COD)\{N(Ph_2PS)_2\}]$, and $[Ir(COE)_2\{N(Ph_2PS)_2\}]$ have been determined. (© 2005 Elsevier B.V. All rights reserved.


Keywords: Iridium; Rhodium; Chalcogen ligands; Crystal structures; Oxidative addition

1. Introduction

The coordination chemistry of dichalcogenoimidodiphosphinates $[N(R_2PQ)_2]^-$ (Q = S, Se, Scheme 1) has received increasing attention due to recent reports on convenient syntheses of these ligands [1–6]. Bidentate $[N(R_2PQ)_2]^-$ can be considered as the chalcogen analogues of acetylacetonate (acac). A range of main group and transition metal ions with $[N(R_2PQ)_2]^-$ have been synthesized. Metal complexes with $[N(R_2PQ)_2]^-$ have been used as catalysts for organic reactions [7] and NMR shift reagents [8]. Despite the high affinity of $[N(R_2PQ)_2]^-$ for late transition metal ions, their complexes with Ir and Rh have not been

well explored. The only structurally characterized Ir and Rh dichalcogenoimidodiphosphinates are the half-sandwich complexes $[Cp^*M{N(R_2PQ)_2}X]$ [9–11]. Previously, we have demonstrated that the unsaturated $[Ru^{II}{N(R_2PS)_2}_2]$ core can stabilize a variety of reactive species including sulfur monoxide [12], diazene [13], carbene, and vinylidene [14]. To further explore the organometallic chemistry of dichalcogenoimidodiphosphinates, we sought to synthesize Ir and Rh compounds with $[N(R_2PQ)_2]^-$ ligands. Also of interest are organoiridium compounds containing $[N(R_2PO)_2]^-$ due to a recent report that Ir compounds with O-donor ligands, notably acetylacetonate, can catalyze anti-Markovnikov hydroarylation of olefins [15]. We here describe the syntheses and crystal structures of Ir and Rh dichalcogenoimidodiphosphinate compounds containing carbonyl, 1,5-cyclooctadiene, and

^{*} Corresponding author. Tel.: +852 2358 7360; fax: +852 2358 1594. *E-mail address:* chleung@ust.hk (W.-H. Leung).

olefin co-ligands, and their oxidative addition reactions with MeI and HCl.

2. Experimental

2.1. General

All manipulations were carried out under nitrogen by standard Schlenk techniques. Solvents were purified, distilled and degassed prior to use. NMR spectra were recorded on a Varian Mercury 300 spectrometer operating at 300 and 121.5 MHz for ¹H and ³¹P, respectively. Chemical shifts (δ , ppm) were reported with reference to SiMe₄ (¹H) and H₃PO₄ (³¹P). Infrared spectra (KBr) were recorded on a Perkin– Elmer 16 PC FT-IR spectrophotometer. Elemental analyses were performed by Medac Ltd, Surrey, UK.

The ligands $K[N(R_2PQ)_2]$ (R = Ph, Q = O, S [16], Se [17], and R = Pr^{*i*}, Q = O, S, Se [18,19]) and the compounds $[M(CO)Cl(PPh_3)_2]$ (M = Ir, Rh [20]), $[Ir(COD)Cl]_2$ (M = Ir, Rh [21]), and $[Ir(ol)_2Cl]_2$ (ol = cyclooctene COE [22], C₂H₄ [23]) were prepared according to the literature methods.

2.2. Syntheses of $[M(CO)(PPh_3)\{N(Ph_2PQ)_2\}]$

To a solution of $[M(CO)Cl(PPh_3)_2](M = Rh (97 mg), Ir (109 mg); 0.14 mmol)$ in THF (15 ml) was added with 1 equivalent of $K[N(Ph_2PQ)_2] (Q = S (68 mg), Se (84 mg); 0.14 mmol)$, and the reaction mixture was stirred at room temperature overnight. The solvent was pumped off and the residue was washed with hexane and ether. Recrystallization from CH_2Cl_2 -Et₂O afforded yellow crystals.

M = Ir, Q = S (1): Yield: 109 mg, 84%. *Anal.* Calc. for $C_{43}H_{35}IrNOP_3S_2 \cdot CH_2Cl_2$: C, 52.0; H, 3.7; N, 1.4. Found: C, 51.9; H, 3.6; N, 1.2%. ¹H NMR (300 MHz, CDCl₃):

 $\delta = 7.27-8.06$ (m, 35H, Ph) ppm. ³¹P{¹H} NMR (121.5 MHz, CDCl₃): $\delta = 18.26$ (dd, J = 10.3, 23.5 Hz, PPh₃), 33.26 (d, J = 23.0, 2.4 Hz), 33.95 (t, J = 10.3, 2.4 Hz) ppm. IR (KBr, cm⁻¹): 1952 [ν (CO)].

M = Ir, Q = Se (2): Yield: 76 mg, 53%. *Anal.* Calc for C₄₃H₃₅IrNOP₃Se₂ · CH₂Cl₂: C, 47.6; H, 3.4; N, 1.3. Found: C, 47.9; H, 3.5; N, 1.0%. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.28-8.07$ (m, 35H, Ph) ppm. ³¹P{¹H} NMR (121.5 MHz, CDCl₃): $\delta = 18.19$ (dd, J = 29.4, 10.2 Hz, PPh₃), 21.85 (d, J = 29.4 Hz), 23.45 (d, J = 10.2 Hz) ppm. IR (KBr, cm⁻¹): 1946 [ν(CO)].

M = Rh, Q = S (3): Yield: 84 mg, 71%. *Anal.* Calc. for $C_{43}H_{35}NOP_3RhS_2 \cdot CH_2Cl_2$: C, 57.0; H, 4.0; N, 1.7. Found: C, 57.2; H, 4.0; N, 1.5%. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.27$ -8.05 (m, Ph) ppm. ³¹P{¹H} NMR (121.5 MHz, CDCl₃): $\delta = 36.19$ (m, PPh₃), 37.84 (d, J = 7.3, 20.1 Hz), 39.15 (dd, J = 7.3, 19.7 Hz) ppm. IR (KBr, cm⁻¹): 1965 [ν (CO)].

M = Rh, Q = Se (4): Yield: 89 mg, 68%. Anal. Calc. for C₄₃H₃₅NOP₃RhSe₂ · CH₂Cl₂: 51.8; H, 3.8; N, 1.4. Found: C, 51.6; H, 3.7; N, 1.3%. ¹H NMR (300 MHz, CDCl₃): δ = 7.31–8.04 (m, Ph) ppm. ³¹P{¹H} NMR (121.5 MHz, CDCl₃): δ = 24.50 (m, PPh₃), 37.52 (m), 38.91 (m) ppm. IR (KBr, cm⁻¹): 1958 [ν(CO)].

2.3. Syntheses of $[M(COD) \{N(PPh_2Q)_2\}]$

To a solution of $[M(COD)Cl]_2$ (M = Rh, 148 mg; Ir, 200 mg; 0.30 mmol) in THF (15 ml) was added 2 equivalents of K[N(Ph₂PQ)₂] (0.60 mmol), during which the color turned from yellowish-orange to yellow immediately. The reaction mixture was stirred at room temperature for 0.5 h. The solvent was then pumped off. Recrystallization from hexane–Et₂O–CH₂Cl₂ afforded yellow crystals.

M = Ir, Q = S (5): Yield: 422 mg, 94%. *Anal.* Calc. for $C_{32}H_{32}IrNP_2S_2 \cdot CH_2Cl_2$: C, 47.5; H, 4.1; N, 1.7. Found: C, 47.6; H, 4.1; N, 1.7%. ¹H NMR (300 MHz, CDCl₃): δ = 1.48–1.55 (m, 2H, COD), 2.01–2.04 (m, 6H, COD), 3.76 (m, 4H, COD), 7.35–7.92 (m, 20H, Ph) ppm. ³¹P{¹H} (121.5 MHz, CDCl₃): δ = 33.30 (s) ppm.

M = Ir, Q = Se (6): Yield: 246 mg, 89%. *Anal.* Calc. for $C_{32}H_{32}IrNP_2Se_2 \cdot 1/2CH_2Cl_2$: C, 44.1; H, 3.8; N, 1.6. Found: C, 44.1; H, 3.9; N, 1.5%. ¹H NMR (300 MHz, CDCl₃): δ = 1.36–1.52 (m, 5H, COD), 1.97 (m, 3H, COD), 3.76 (m, 4H, COD), 7.36–7.93 (m, 20H, Ph) ppm. ³¹P{¹H} (121.5 MHz, CDCl₃): δ = 23.20 (s) ppm.

M = Rh, Q = S (7): Yield: 276 mg, 70%. *Anal.* Calc. for $C_{32}H_{32}NP_2RhS_2 \cdot H_2O$: C, 56.7; H, 5.1; N, 2.1. Found: C, 56.8; H, 4.9; N, 2.1%. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.72-1.80$ (m, 4H, COD), 2.16–2.19 (m, 4H, COD), 4.19 (m, 4H, COD), 7.34–7.95 (m, 20H, Ph) ppm. ³¹P{¹H} NMR (121.5 MHz, CDCl₃): $\delta = 37.37$ (d, $J_{RhP} = 3.0$ Hz) ppm.

2.4. Syntheses of $[Ir(ol)_2 \{N(PPr_2^iQ)_2\}]$

To a suspension of $[Ir(ol)_2Cl]_2$ (0.1 mol, L = COE (90 mg)), C_2H_4 (57 mg) in Et₂O (10 ml) was added 2 equiv-

Download English Version:

https://daneshyari.com/en/article/1313008

Download Persian Version:

https://daneshyari.com/article/1313008

Daneshyari.com