

Available online at www.sciencedirect.com

Inorganica Chimica Acta 358 (2005) 1882-1886

Inorganica Chimica Acta

www.elsevier.com/locate/ica

Hydroxylation of isophthalic acid in the hydrothermal reaction of Cu^{II}-isophthalate system – Syntheses and crystal structures of two coordination polymers

Shi-Yao Yang ^{a,*}, La-Sheng Long ^a, Rong-Bin Huang ^a, Lan-Sun Zheng ^a, Seik Weng Ng ^b

^a Department of Chemistry and The State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China ^b Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaya

Received 19 July 2004; accepted 30 December 2004

Abstract

The reaction of isophthalic acid (H₂ip) and copper nitrate under hydrothermal condition produced an in situ synthesized ligand 2-hydroxy isophthalic acid (or 2,6-dicarboxyl phenol, H₃ipO) derived from H₂ip without the presence of N-heterocyclic ligands. The hydroxylation was controlled by the temperature of hydrothermal synthesis. Two coordination polymers, $\{[Cu_5(OH)_2(ip)(ipO)_2] \cdot (H_2O)\}_n$ (1) and $[Cu_3(ipO)_2(H_2O)_2]_n$ (2) were synthesized and characterized by X-ray crystallography, IR spectra and elemental analyses. Complex 1 was assembled with both the original ligand and the in situ synthesized ligand. © 2005 Elsevier B.V. All rights reserved.

Keywords: Hydrothermal synthesis; Cu^{II} complex; Isophthalic acid; Hydroxylation; Coordination polymer; Crystal structure

1. Introduction

The assembly of coordination polymers is now of great interest due to its importance both in chemistry and material science [1–11]. Among the approaches to coordination polymers, the assembly with metal ions and the in situ synthesized ligands is a striking method and a number of complexes with intriguing structures and properties have been prepared this way [5–11]. However, the ligands involved in in situ redox derivations are almost N-heterocyclic ligands such as phenanthroline, bipyridine and their derivatives [5,6]. There is only one example for non N-heterocyclic ligand yet in the presence of 4,4'-bipyridine [7]. Since it is well known that copper is a key cofactor in a vast range of

chemical and biochemical catalytic systems [12–14], it is reasonable to presume that in the assembly of coordination polymers with Cu^{II} ions and appropriate ligands, e.g., isophthalic acid [15–18], the in situ derivation of ligands may occur even without the presence of N-heterocyclic ligands. As a part of our study on coordination polymers [19–23], we report here (1) the hydroxylation of isophthalic acid under Cu^{II}-isophthalate hydrothermal condition and (2) the formation of two coordination polymers: {[Cu₅(OH)₂(ip)(ipO)₂] · (H₂O)}_n (1) and [Cu₃-(ipO)₂(H₂O)₂]_n (2) (H₂ip = isophthalic acid, H₃ipO = 2-hydroxy isophthalic acid).

2. Experimental

2.1. Reagents and physical measurements

All reagents were commercially available and used without further purification. IR spectra were recorded

^{*} Corresponding author. Tel.: +86 592 2185191; fax: +86 592 2183047.

E-mail addresses: syyang@yanan.xmu.edu.cn (S.-Y. Yang), lslong@jingxian.xmu.edu.cn (L.-S. Long).

on a Nicolet 740 FTIR spectrometer (wavelength range $4000-400 \text{ cm}^{-1}$, MCT-B detector, resolution 4 cm^{-1}) using KBr pellets. Analyses for C and H were performed on a CE instrument EA 1110 elemental analyzer.

2.2. Synthesis of $\{[Cu_5(OH)_2(ip)(ipO)_2] \cdot (H_2O)\}_n$ (1)

An aqueous mixture of copper nitrate trihydrate (0.24 g, 1 mmol), isophthalic acid (0.17 g, 1 mmol) and sodium hydroxide (0.08 g, 2 mmol) in 16 mL water was homogenized by stirring. The mixture was transferred into a 20-ml Teflon-lined bomb and heated to 180 °C and kept for 100 h. After cooling down to room temperature, bluish green sheet crystals of **1** were separated mechanically. FT-IR (KBr, cm⁻¹): 3638, 3443w, br, 1591vs, 1531s, 1444s, 1384vs, 1283, 1252, 1102, 1081, 762, 746s, 728, 635, 494.

2.3. Synthesis of $[Cu_3(ipO)_2(H_2O)_2]_n$ (2)

A synthesis process similar to **1** was used to prepare **2** except that the mixture was treated hydrothermally at 200 °C. Green block crystals of **1** were collected by filtration, washed with distilled water and dried in air. The yield of the product was about 25% based on Cu^{II}. Elemental analysis: *Anal.* Calc. for **2** C₁₆H₁₀Cu₃O₁₂: C, 32.86; H, 1.72. Found: C, 32.77; H, 1.80%. FT-IR (KBr, cm⁻¹): 3599w, 3183br, 1615vs, 1588s, 1557vs, 1447s, 1398w, 1375s, 1287, 758s, 635, 453w.

2.4. Determination of crystal structure

Single crystals of 1 and 2 were mounted on an Enraf– Nonius CAD4 diffractometer using graphite monochromated Mo K α radiation ($\lambda = 0.71073$ Å) with ω scan mode and data were measured at 298 K. Structural solution and full-matrix least-square refinement based on F^2 were performed, respectively, with the SHELXS-97 [24] and SHELXL-97 [25] program packages. All the nonhydrogen atoms were refined anisotropically. Crystallographic data for 1 and 2 are summarized in Table 1. Selected bond lengths and angles for 1 and 2 are listed, respectively, in Tables 2 and 3.

3. Results and discussion

3.1. Synthesis

The complexes $\{[Cu_5(OH)_2(ip)(ipO)_2] \cdot (H_2O)\}_n$ (1) and $[Cu_3(ipO)_2(H_2O)_2]_n$ (2) were synthesized with isophthalic acid and copper nitrate by hydrothermal reaction. In a typical hydrothermal synthesis, an aqueous mixture of copper nitrate, isophthalic acid and sodium hydroxide reacted at 180–200 °C for 100 h. During the synthe-

Table 1					
Crystallographic	data	for	1	and	2

	1	2
Empirical formula	C ₂₄ H ₁₄ Cu ₅ O ₁₇	C ₁₆ H ₁₀ Cu ₃ O ₁₂
Formula weight	892.05	584.86
Crystal system	monoclinic	monoclinic
Space group	$P2_1/m$	$P2_1/c$
Unit cell dimensions		
a (Å)	5.340(1)	5.029(1)
b (Å)	21.213(4)	10.403(2)
c (Å)	11.630(2)	15.596(3)
β (°)	96.70(3)	91.97(3)
$V(Å^3)$	1308.6(5)	815.4(3)
Z	2	2
$\rho (Mg m^{-3})$	2.264	2.382
<i>F</i> (0 0 0)	878	578
μ (Mo K α) (mm ⁻¹)	4.086	3.95
Crystal size (mm)	$0.18 \times 0.14 \times 0.03$	$0.40 \times 0.40 \times 0.18$
θ Range (°)	1.8-25.0	2.4-25.0
hkl ranges	$-6 \leqslant h \leqslant 0$,	$-5 \leqslant h \leqslant 0$,
-	$-25 \leqslant k \leqslant 25$,	$-12 \leq k \leq 0$,
	$-13 \leq l \leq 13$	$-18 \leqslant l \leqslant 18$
Reflections collected	5142	1604
Independent reflections	2379	1430
R _{int}	0.085	0.014
Observed reflections	1534	1326
$[I > 2\sigma(I)]$		
Parameters	220	149
Goodness-of-Fit F^2	0.99	1.07
$R_1 \left[I > 2\sigma(I) \right]$	0.053	0.029
wR_2	0.118	0.078
R_1 (all data)	0.099	0.031
wR_2	0.138	0.081
Largest difference peak and hole (e $Å^{-3}$)	0.76, -0.81	0.56, -0.55

Table 2	
Selected bond lengths (Å) and angles (°) for complex 1	

Cu1–O1	1.934(5)	Cu3–O1d	2.476(6)
Cu1–O8	1.911(5)	Cu3–O2	1.929(6)
Cu2–O4b	1.876(6)	Cu3–O3	1.959(6)
Cu2–O5	1.884(6)	Cu3–O8	1.941(5)
Cu2–O6c	2.764(7)	Cu3–O8e	1.988(6)
Cu2–O7	1.895(6)	Cu3–O4	2.549(6)
Cu2–O7b	1.934(6)		
Ol–Cul–Ola	180.0(1)	O1d-Cu3-O2	113.0(2)
O1–Cu1–O8	92.5(2)	O1d-Cu3-O3	77.6(2)
O1–Cu1–O8a	87.5(2)	O1d-Cu3-O4	123.9(2)
Ola–Cul–O8	87.5(2)	O1d-Cu3-O8	101.7(2)
Ola–Cul–O8a	92.5(2)	O1d-Cu3-O8e	72.2(2)
O8–Cu1–O8a	180.0(1)	O2–Cu3–O3	92.2(2)
O4b-Cu2-O5	93.9(3)	O2-Cu3-O4	99.8(2)
O4b-Cu2-O6c	77.9(2)	O2-Cu3-O8	93.5(2)
O4b-Cu2-O7	170.7(3)	O2–Cu3–O8e	171.5(2)
O4b-Cu2-O7b	92.5(2)	O3–Cu3–O4	56.1(2)
O5-Cu2-O6c	95.5(2)	O3–Cu3–O8	174.1(2)
O5–Cu2–O7	94.2(3)	O3–Cu3–O8e	95.6(2)
O5–Cu2–O7b	171.4(3)	O4Cu3O8	121.0(2)
O6c-Cu2-O7	105.9(2)	O4–Cu3–O8e	81.8(2)
O6c-Cu2-O7b	91.4(2)	O8–Cu3–O8e	78.6(2)
O7–Cu2–O7b	79.0(3)		

Symmetry operation: (a) -x, 1 - y, 1 - z; (b) 1 - x, 1 - y, 2 - z; (c) x - 1, y, z; (d) x + 1, y, z; (e) 1 - x, 1 - y, 1 - z.

Download English Version:

https://daneshyari.com/en/article/1313221

Download Persian Version:

https://daneshyari.com/article/1313221

Daneshyari.com