ELSEVIER

Contents lists available at ScienceDirect

Journal of Fluorine Chemistry

journal homepage: www.elsevier.com/locate/fluor

Radical reactivity of α , β , β -trifluoroacrylic ester: Facile approach to γ -silyloxy- α , β , β -trifluorobutyric acid derivatives involving regioselective nucleophilic radical addition reaction

Ken Tamamoto, Shigeyuki Yamada, Masao Higashi, Tsutomu Konno*, Takashi Ishihara

Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan

ARTICLE INFO

Article history: Received 17 June 2016 Received in revised form 24 August 2016 Accepted 24 August 2016 Available online 26 August 2016

Keyword: Fluorinated alkenes Radical addition Regioselective addition Organofluorine compounds

1. Introduction

 γ -Hydroxybutanoic acid and the derivatives are well-known as bio-active substances and coinstantaneously as one of the most promising synthetic intermediates toward y-butyrolactone scaffolds that are often found in agrochemicals as well as pharmaceuticals [1]. Recently, much attention has been paid to fluorinecontaining materials since fluorine atom(s) incorporated in a molecule can very often impart unique chemical as well as physical properties to the molecule. Consequently, it is not surprising that many efficient synthetic pathways for fluorine-containing γ -hydroxy acid derivatives have been extensively developed so far [2]. Among them, however, little attention has been paid to γ -hydroxy- α,β,β -trifluorobutanoate in spite of high potential synthetic utility. To the best of our knowledge, there have been only a few reports on the syntheses of γ -hydroxy- α , β , β -trifluorobutanoate and its derivatives [3], and therefore synthetic methods for the preparation of such molecules have been highly desirable.

Since several years ago, we intensively studied the chemical reactivity of α,β,β -trifluoroacrylic acid benzyl ester (1) as a fluorinated substrate, which is of easy-handling [4] as well as versatile convertibility. Thus, we demonstrated the reaction of 1 with various nucleophiles as well as with dienes, because there were no systematic studies on the chemical reactivity albeit the 1

* Corresponding author. E-mail address: konno@kit.ac.jp (T. Konno).

http://dx.doi.org/10.1016/j.jfluchem.2016.08.011 0022-1139/© 2016 Elsevier B.V. All rights reserved.

ABSTRACT

In this paper are disclosed new aspects for chemical reactivity of benzyl α , β , β -trifluoroacrylate, which is already known to undergo C—C bond formation reactions *via* nucleophilic addition-elimination reaction or Diels-Alder cycloaddition reaction. The α , β , β -trifluoroacrylate reacted well with nucleophilic radical species, generated from cyclic ethers, to afford the corresponding radical adducts in good to excellent yield as a diastereomeric mixture. The radical addition protocol is successfully evolved into the new synthetic approach to γ -silyloxy- α , β , β -trifluorobutanoic acid derivatives, which fascinates as promising precursors for medicinally as well as pharmaceutically-important organic molecules.

© 2016 Elsevier B.V. All rights reserved.

was of great significance as a promising entry for not only versatile fluorine-containing organic molecules but also fluorinated polymers. As a consequence, we successfully reported that the 1 underwent stereoselective addition-elimination reaction with organocuprates or regioselective Diels-Alder reaction with various dienes, leading to the corresponding Z-vic-difluoroacrylate or trifluorinated cyclohexene derivatives in good to excellent yields, respectively [5,6]. During the intensive studies, it was obviously proved that the fluorine(s) on alkene moiety in **1** caused effective lowering of the lowest unoccupied molecular orbital (LUMO) and, therefore, the carbon at β -position was easily susceptible to nucleophilic addition with various nucleophiles. With the deep understandings, our next interest was directed toward nucleophilic radical addition reaction with 1, which has a significant advantage like high tolerance for active proton or water in contrast to organometallic nucleophiles: the radical addition would be a promising methodology to afford various kinds of fluorinecontaining molecules, especially fluorinated γ -hydroxybutanoic acid derivatives. In this paper, we would like to disclose the new aspect of the chemical reactivity of α, β, β -trifluoroacrylate **1** with nucleophilic radicals in detail. Additionally, we would also offer facile approach to γ -silyloxy- α , β , β -trifluorobutyric acid derivatives by means of the regioselective nucleophilic radical addition reaction (Scheme 1).

Scheme 1. Nucleophilic radical addition reaction of 1 undertaken in this study.

2. Results and discussion

2.1. Radical addition reaction of α , β , β -trifluoroacrylate with cyclic ethers

Initially, we started with nucleophilic radical addition of benzyl α , β , β -trifluoroacrylate (1), which can be easily handled by higher boiling point than the corresponding methyl or ethyl esters as previously mentioned [4], with cyclic ethers, *e.g.* tetrahydrofuran, 1,3-dioxolane, and 1,4-dioxane. The benzyl ester **1** was obtained by a vacuum distillation (160–162 °C/20 mmHg) according to our previous reports with a slight modification [5]. The results for the radical addition reaction are summarized in Table 1.

Thus, on treating **1** (0.5 mmol) with 3 mL of tetrahydrofuran as a reactant/solvent in the presence of 10 mol% of azobis(isobutyronitrile) (AIBN) as a radical initiator at reflux temperature for 20 h, the radical reaction proceeded smoothly to give the corresponding radical adduct **2a** in 82% yield as a diastereomeric mixture in a ratio of 55:45 (Entry 1, Table 1) [7]. In this case, 15% of the starting ester **1**

Table 1

Azobis(isobutyronitrile) (AIBN, X mol%) Cyclic ether (solvent, 3.0 mL) still remained unreacted. Increasing the amount of AIBN loading from 10 mol% to 30 mol% led to a significant decrease of the yield of **2a** as well as 28% recovery of **1** (Entry 2). On the other hand, a stepwise addition of AIBN at 10 h interval resulted in a significant improvement of the reaction efficacy, affording the desired adduct **2a** quantitatively (Entry 3). With a similar manner, 1,3-dioxolane and 1,4-dioxane as a reactant/solvent could also participate very well in the nucleophilic radical addition reaction, giving rise to the corresponding addition products **2b** and **2c** quantitatively (Entries 4 and 5).

2.2. Radical addition reaction of α , β , β -trifluoroacrylate with ketyl radical in situ generated from various carbonyl compounds

As mentioned above, we have reported the specific chemical reactivity of α,β,β -trifluoroacrylate **1** toward nucleophiles or dienes due to the low electron density on the β -carbon triggered by electrostatic p- π repulsion between lone pairs on fluorine atoms and π -electrons on the *sp*²-hybridized carbon [8]. It means that it is difficult to incorporate functional groups including a hydroxyl group in the structure of 1. In the aforementioned radical addition reaction, however, the fluorinated alkene 1 was found to accept radicals at β -position through C–C bond formation reactions. At the viewpoint, we envisioned that the radical reaction would be one of the most suitable methodologies to incorporate functional moieties, especially a hydroxy group in the fluorinated molecule 1. Therefore, we next carried out radical addition reactions of **1** with ketvl radicals *in situ* generated from various carbonyl compounds [9]. We initially began with an optimization of reaction conditions for radical addition of **1** with benzaldehyde-ketyl radical, generated from benzaldehyde (3a),

O 1 (0.5 mmol)	10100, 2011	F 2			
Entry	Cyclic ether (Solvent)	Amount of AIBN (X mol%)	Product	Yieldª/% [d.r.] of 2	Recovery ^a /% of 1
1 2 3	(37 mmol/ b.p. 66 °C)	10 30 10 + 10 ^b	OBn F 2a	82 [55:45] 65 [56:44] quant (93) [56:44]	15 28 0
4	0 (43 mmol/ b.p. 75 °C)	10 + 10 ^b	O C C C C C C C C C C C C C	quant (89) [–]	0
5	(35 mmol/ b.p. 101 °C)	10 + 10 ^b	O F O Bn F O Bn F O Bn F C	quant (83) [55:45]	0

^a Determined by ¹⁹F NMR spectroscopy using PhCF₃ as an internal standard. Values in parentheses and brackets are the isolated yield and the diastereomeric ratio, respectively.

^b AIBN (10 mol% each) was stepwise added into the reaction mixture at 10 h interval.

Download English Version:

https://daneshyari.com/en/article/1313466

Download Persian Version:

https://daneshyari.com/article/1313466

Daneshyari.com