FISEVIER

Contents lists available at ScienceDirect

Journal of Fluorine Chemistry

journal homepage: www.elsevier.com/locate/fluor

Cobalt/diamine-catalyzed 1,1-difluoroethylation and 2,2,2trifluoroethylation of aryl Grignard reagents with corresponding fluoroalkyl halides

Yuhki Ohtsuka, Tetsu Yamakawa*

Sagami Chemical Research Institute, Hayakawa 2743-1, Ayase, Kanagawa 252-1193, Japan

ARTICLE INFO

Article history: Received 20 October 2015 Received in revised form 14 March 2016 Accepted 16 March 2016 Available online 17 March 2016

Keywords: 1,1-Difluoroethylation 2,2,2-Trifluoroethylation Cobalt catalyst Diamine ligand

ABSTRACT

Cobalt/diamine-catalyzed 1,1-difluoroethylation and 2,2,2-trifluoroethylation of aryl Grignard reagents with 1,1-difluoroethyl and 2,2,2-trifluoroethyl halides were investigated. With regard to the 1,1-difluoroethylation, 1,2-bis(dimethylamino)-2-methylpropane, which has been rarely used in the cross-coupling reactions, gave the highest yield among the diamine ligands tested. In the 2,2,2-trifluoroethylation, *trans*-1,2-bis(dimethylamino)cyclohexane provided the desired products in satisfactory yields with not only 2,2,2-trifluoroethyl iodide but also chloride. This Co/diamine catalyst was also effective for the coupling with other partially fluorinated alkyl halides in the presence of appropriate diamine ligands.

© 2016 Published by Elsevier B.V.

1. Introduction

Because trifluoromethyl and difluoromethyl groups directly bound to aromatic rings give unique bio-active character, numerous syntheses of aromatic compounds containing these functional groups have been reported [1,2]. In a similar manner, other fluoroalkyl groups, particularly partially fluorinated alkyl groups, have received much attention for medical and agricultural compounds [3]. Recently, the remarkable bioactivity of heteroaromatic compounds and nucleobases featuring the 1,1-difluoroethyl (CH₃CF₂) group, which mimics the steric and electronic features of methoxy group [4b-e], has been explored [4]. Thus far, aromatic compounds having CH₃CF₂ group have been synthesized via fluorination of functional groups on aromatic rings with various fluorinating reagents. Fluorination of the ethynyl group in phenylacetylene using HF-organic base provides 1,1-difluoroethylbenzene [5]. Deoxo-fluor (bis(2-methoxyethyl)aminosulfur trifluoride) [6] or phenylsulfur chlorotetrafluoride [7] converts the acetyl group in acetophenone to CH₃CF₂ group, yielding 1,1difluoroethylbenzene. Similarly, 3-acetylindoles were converted to 3-(1,1-difluoroethyl)indoles with DAST (N,N-diethylaminosulfur trifluoride) [8]. The use of Selectfluor (1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate)) [9] or uranium hexafluoride [10] gives 1,1-difluoroethylbenzenes from 2-methyl-2-phenyl-1,3-dithiolane or 2-aryl-1,3-dithianes. The methylene hydrogen atoms in ethylbenzenes can be selectively substituted with fluorine atoms by using Selectfluor or Selectfluor II (4-fluoro-1-methyl-1,4-diazoniabicyclo[2.2.2]octane bis(tetra-fluoroborate)) in the presence of a catalytic amount of xanthone [11][11a] or Na₂S₂O₈ [11b,c]. Very recently, fluorination of (1-chloroethenyl) benzene or 1-bromo-4-(1-chloroethenyl)benzene with HF to (1,1-difluoroethyl)benzene or 1-bromo-4-(1,1-difluoroethyl)benzene, respectively, was reported in a patent [12]. This method appears to be more practical than the other ones, because HF is the most inexpensive fluorinating reagent.

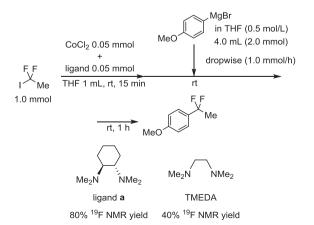
On the other hand, 1,1-difluoroethylation of aromatic compounds via cross-coupling using 1,1-difluoroethyl halides [13] or their metal reagents has not been reported to the best of our knowledge, although it requires no toxic and expensive fluorination reagents. In particular, the cross-coupling of 1,1-difluoroethyl halides and arylmetal reagents can be a practical and usable process because of its availability of substrates.

With regard to 2,2,2-trifluoroethylation, which furnishes bioactive aromatic compounds possessing the 2,2,2-trifluoroethyl (CF₃CH₂) group [14], several examples of palladium-catalyzed cross-couplings of 2,2,2-trifluoroethyl iodide or triflate and arylboronic acids or their esters have been reported [15]. However, they require a large amount of palladium, expensive ligands such as 2-dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl and optionally CuCl. Xu et al. reported the Cu-promoted coupling of aryliodides 2,2,2-trifluoroethyl iodide [16]. Although this reaction proceeds without any ligands and bases, the excess amount of Cu

^{*} Corresponding author.

E-mail address: t_yamakawa@sagami.or.jp (T. Yamakawa).

powder and the long reaction time, 55 h, are necessary. Recently, Ackermann et al. showed 2,2,2-trifluoroethylation with CF₃CH₂I through C—H bond activation with a catalyst consisting of [(dimethoxyethane)NiCl₂] and bis(2-dimethylaminoethyl) ether [17], though the substrates of this reaction were limited to benzamides and 2,2,2-trifluoroethylation occurred only at the *ortho* position of an amide group. In addition, the radical 2,2,2-trifluoroethylation of aromatic C—H bond with zinc (2,2,2-trifluoroethyl)sulphinate afforded only 15% yields [18].


We began our investigation with the aim of realizing a more general and practical cross-coupling process for partially fluorinated alkylation. Therefore, we focused on a catalyst consisting of cobalt and a diamine ligand that catalyzes the cross-coupling of aryl Grignard reagents and alkyl halides [19] or arylzinc reagents and ethyl bromodifluoroacetate [20]. As a result, we found that 1,1difluoroethylation and 2,2,2-trifluoroethylation proceeded smoothly with readily available 1,1-difluoroethyl iodide (CH₃CF₂I), 1,1-difluoroethyl bromide (CH₃CF₂Br) or 2,2,2-trifluoroethyl iodide (CF₃CH₂I) and aryl Grignard reagents in the presence of a Co/ diamine catalyst. Interestingly, 2,2,2-trifluoroethylation also occurred by the use of corresponding chloride (CF₃CH₂Cl), which should be rather inactive. Based on the other partially fluorinated alkylation by the use of partially fluorinated alkyl halides possessing three or four carbons, we revealed that the yields largely depended on the diamine ligand.

2. Results and discussion

2.1. 1,1-Difluoroethylation

Scheme 1 illustrates the reaction of 4-methoxyphenyl Grignard reagent and CH₃CF₂I with CoCl₂ as a cobalt precursor and *trans*-1,2-bis(dimethylamino) cyclohexane (ligand **a**) or *N,N,N',N'*-tetramethylethylenediamine (TMEDA) as a diamine ligand; these diamine ligands were used in the previously reported cobalt-catalyzed cross-coupling [19,20]. The desired product was obtained in 40% and 80% ¹⁹F NMR yield, respectively. This result indicated that the cobalt/diamine catalyst could be used for the target reaction and that surveying the reaction conditions to obtain the higher yields was worthwhile.

First, the reaction with 4-methoxyphenyl Grignard reagent was examined with various cobalt precursors and diamine ligands. CH_3CF_2Br was used in this examination instead of the iodide, because (i) it is less expensive than the iodide, and (ii) the differences derived from the precursors and ligands could be clearer owing to its lower reactivity compared to the iodide. Taking into account the low boiling point $(14 \, ^{\circ}C)$ of CH_3CF_2Br , the

Scheme 1. Cobalt/diamine catalyzed coupling of CH_3CF_2I and 4-methoxyphenyl Grignard reagent.

Table 1Cobalt/diamine-catalyzed coupling of CH₃CF₂Br and 4-methoxyphenyl Grignard reagent with various Co precursors.

entry	Co precursor	yield/% ^a	
1	CoCl ₂	62	
2	CoBr ₂	67	
3	CoI ₂	79	
4	CoF ₂	2	
5	CoF ₃	3	
6	Co(OAc) ₂	55	
7	Co(acac) ₂	58	
8	Co(acac)₃	40	
9^{b}	CoCl ₂	52	
10 ^b	CoBr ₂	54	
11 ^b	CoI ₂	74	

- a Determined by 19F NMR.
- ^b Co precursor 0.05 mmol, ligand 0.05 mmol.

reactions were carried out with a THF solution of the bromide. Table 1 lists the results obtained using various cobalt precursors with ligand a that gave the higher yield in Scheme 1. As anticipated from the reactivity of the bromide, the yield with CoCl₂ decreased to 62%, which was lower than that with the bromide, 80% (entry 1). Of the cobalt halides tested, CoI₂ provided the highest yield of the desired product (entry 3). Both divalent and trivalent fluoride salts were inactive (entries 4 and 5). A divalent acetate precursor gave a moderate yield (entry 6). With regard to acetylacetonate precursors, both divalent and trivalent precursors provided moderate yields (entries 7 and 8). When 0.05 mmol of CoI₂, CoBr₂ or CoCl₂ and ligand a were used, all the yields decreased (entries 9-11) and a satisfactory yield, 74%, was obtained only with CoI₂. Based on the results in Table 1, 0.10 mmol of CoCl₂ was chosen as the precursor hereinafter, because it gave a satisfactory yield and was readily available.

Fig. 1 shows the ¹⁹F NMR yields of 1-(1.1-difluoroethyl)-4methoxybenzene from CH₃CF₂Br and 4-methoxyphenyl Grignard reagent with CoCl₂ and various diamines featuring an N,N,N',N'tetramethylethylenediamine backbone as a ligand. Although the yield with ligand a was larger than that with TMEDA, each ligand afforded a lower yield than Scheme 1. This is readily anticipated by the lower reactivity of bromide than iodide. Interestingly, only 1,2bis(dimethylamino)-2-methylpropane (ligand **b**) gave a higher yield than ligand **a** (89% vs. 62%) among the diamines tested. This compound is known as a catalyst in polyurethane synthesis [21] and is one of the ligands in LiNEt₂-catalyzed hydroamination [22]. However, it has never been used in cross-coupling reactions to the best of our knowledge. All of the other diamine ligands also afforded lower yields than ligand a and b. In addition, bis(2dimethylaminoethyl) ether, which was used in the nickelcatalyzed 2,2,2-trifluoroethylation through C—H bond activation afforded no desired product at all.

Based on the results in Table 1 and Fig. 1, we chose ligand a (*trans*-1,2-bis(dimethylamino) cyclohexane), which has been used previously in the cobalt-catalyzed cross-coupling, and ligand **b** (1,2-bis(dimethylamino)-2-methylpropane), which revealed its

Download English Version:

https://daneshyari.com/en/article/1313479

Download Persian Version:

https://daneshyari.com/article/1313479

<u>Daneshyari.com</u>