One dimensional group 12 metal undecafluoridoditantalates

CrossMark

Gašper Tavčar*, Evgeny Goreshnik
Department of Inorganic Chemistry and Technology, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia

ARTICLE INFO

Article history:

Received 13 June 2016
Received in revised form 21 July 2016
Accepted 26 July 2016
Available online 26 July 2016

Keywords:

Undecafluoridoditantalates
Hexafluoridotantalates
Cadmium
Mercury

A B S TRACT

The reactions between group 12 metals and the acidic TaF_{5} were studied in the anhydrous HF (aHF) solvent. We were able to prepare and characterize the first compounds containing metal M^{2+} cations and undecafluoridodimetallate anions $-\mathrm{M}\left(\mathrm{Ta}_{2} \mathrm{~F}_{11}\right)_{2}(\mathrm{M}=\mathrm{Cd}, \mathrm{Hg})$ without the additional cations, anions or ligands included in the crystal structure. They both crystallize in $P-1$ space group with cell parameters $a=9.1571(4) \AA, b=9.8750(3) \AA, c=10.9400(7) \AA, \alpha=94.389(4)^{\circ}, \beta=113.124(5)^{\circ}, \gamma=101.142(3)^{\circ}, V=879.81$ (8) $\AA^{3}, \mathrm{Z}=2, \mathrm{~T}=150 \mathrm{~K}\left(\mathrm{Cd}\left(\mathrm{Ta}_{2} \mathrm{~F}_{11}\right)_{2}\right)$ and $a=9.1381(5) \AA, b=9.8613(6) \AA, c=11.4470(7) \AA, \alpha=114.086(6)^{\circ}$, $\beta=102.290(5)^{\circ}, \gamma=100.398(5)^{\circ}, V=877.84(11) \AA^{3}, Z=2, T=150 \mathrm{~K}\left(\mathrm{Hg}\left(\mathrm{Ta}_{2} \mathrm{~F}_{11}\right)_{2}\right)$. Metal cations connected through two anions form chains along b axis. $\mathrm{M}\left(\mathrm{HF}_{2}\right)_{2}\left(\mathrm{TaF}_{6}\right)_{2} \cdot \mathrm{nHF}(\mathrm{M}=\mathrm{Cd}, \mathrm{Hg})$ compounds were also prepared in the $\mathrm{MF}_{2} / \mathrm{TaF}_{5}(\mathrm{M}=\mathrm{Cd}, \mathrm{Hg})$ system and their crystal structures were determined.
© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The undecafluoridodimetalate anions ($\mathrm{A}_{2} \mathrm{~F}_{11}{ }^{-}$) are less common in superacid chemistry than the monomeric $\mathrm{AF}_{6}{ }^{-}$species. They are obtained when excess parent Lewis acid AF_{5} coordinates to fluoride ion in the solution to form $\mathrm{A}_{2} \mathrm{~F}_{11}{ }^{-}$anion. Only the strongest Lewis acids $\mathrm{AF}_{5}(\mathrm{~A}=\mathrm{As}, \mathrm{Sb}, \mathrm{Ru}, \mathrm{Ir}, \mathrm{Bi}, \mathrm{Nb}, \mathrm{Ta}, \mathrm{Pt})$ tend to form such dimeric anions, but only systems containing $\mathrm{Sb}_{2} \mathrm{~F}_{11}{ }^{-}$were studied more extensively. In most of those systems counter-cation is in +1 oxidation state. There are different reports on the preparation of pure $\mathrm{M}\left(\mathrm{AF}_{6}\right)_{2}$ compound prepared by the reaction between corresponding metal difluorides and $\mathrm{AF}_{5}(\mathrm{~A}=\mathrm{As}, \mathrm{Sb}$, etc.) fluoride-ion acceptors [1,2]. However crystallization from different solvents like $\mathrm{SO}_{2}, \mathrm{CH}_{3} \mathrm{CN}$ [3-5] and even anhydrous hydrogen fluoride (aHF), that is considered a weak ligand, mostly yields products with solvent coordinated to the metal center. UV-vis spectra of solutions containing Lewis acids ($\mathrm{AsF}_{5}, \mathrm{BF}_{3}$, etc.) and MF_{2} in aHF show that metal centers are surrounded by HF molecules [6], that can be removed or partially removed during the isolation. $\mathrm{A}_{2} \mathrm{~F}_{11}{ }^{-}$anions are larger than all other species in $\mathrm{MF}_{2} / \mathrm{AF}_{5} / \mathrm{aHF}$ system mentioned before therefore similar could be expected for $\mathrm{M}\left(\mathrm{A}_{2} \mathrm{~F}_{11}\right)_{2}$ compounds with metal $2+$ cations. As expected all the reported compounds contain either other cations and anions $\left(\mathrm{H}_{3} \mathrm{O}\right) \mathrm{Cd}\left(\mathrm{SbF}_{6}\right)\left(\mathrm{Sb}_{2} \mathrm{~F}_{11}\right)_{2},\left(\mathrm{H}_{3} \mathrm{O}\right)_{2} \mathrm{Cd}\left(\mathrm{SbF}_{6}\right)_{3}\left(\mathrm{Sb}_{2} \mathrm{~F}_{11}\right)[7], \mathrm{AuXe}_{2} \mathrm{~F}\left(\mathrm{SbF}_{6}\right)$ $\left(\mathrm{Sb}_{2} \mathrm{~F}_{11}\right)$ [8] or just neutral ligands $\mathrm{AuXe}_{2}\left(\mathrm{Sb}_{2} \mathrm{~F}_{11}\right)_{2}$ [8], AuX$\mathrm{e}_{4}\left(\mathrm{Sb}_{2} \mathrm{~F}_{11}\right)_{2}$ [9], $\mathrm{M}(\mathrm{CO})_{\mathrm{n}}\left(\mathrm{Sb}_{2} \mathrm{~F}_{11}\right)_{2}(\mathrm{M}=\mathrm{Hg}, \mathrm{Pd}, \mathrm{Pt}, \mathrm{Fe}, \mathrm{Ru}, \mathrm{Os} ; \mathrm{n}=2-$

[^0]6) [10]. On the other hand no $\mathrm{M}\left(\mathrm{A}_{2} \mathrm{~F}_{11}\right)_{2}$ compound without additional ligand and with metal M^{2+} cations have been reported so far.

Our intention was to prepare and study the geometry of M $\left(\mathrm{A}_{2} \mathrm{~F}_{11}\right)_{2}$ compounds without the influence of additional coordinated ligands or other cations that could influence its formation or geometry. Group 12 elements were selected because related products were observed for cadmium - $\left(\mathrm{H}_{3} \mathrm{O}\right) \mathrm{Cd}\left(\mathrm{SbF}_{6}\right)\left(\mathrm{Sb}_{2} \mathrm{~F}_{11}\right)_{2}$ and $\left(\mathrm{H}_{3} \mathrm{O}\right)_{2} \mathrm{Cd}\left(\mathrm{SbF}_{6}\right)_{3}\left(\mathrm{Sb}_{2} \mathrm{~F}_{11}\right)$ [7], while $\mathrm{Hg}\left(\mathrm{Ta}_{2} \mathrm{~F}_{11}\right)_{2}$ in SO_{2} solution was mentioned in the literature [11] without direct proof of its existence and composition. From all the suitable AF_{5} Lewis acids TaF_{5} was chosen as an acidic building block instead of widely used SbF_{5} because it is not volatile at room temperature [12]. Consequently formed oligomers should have higher stability during crystallization or isolation. The only drawback of the TaF_{5} is its lower solubility in aHF, which could influence its reactivity and formation of oligomeric species [13]. $\mathrm{Ta}_{2} \mathrm{~F}_{11}{ }^{-}$anion can be rarely found in the literature and in most cases it is not structurally characterized. Examples of characterized compounds containing $\mathrm{Ta}_{2} \mathrm{~F}_{11}{ }^{-}$anion that can be found in the literature are: $\mathrm{O}_{2} \mathrm{Ta}_{2} \mathrm{~F}_{11}, \mathrm{CsTa}_{2} \mathrm{~F}_{11}, \mathrm{XeFTa}_{2} \mathrm{~F}_{11}$ [14], [2,4-(OMe) $\left.)_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right]\left[\mathrm{Ta}_{2} \mathrm{~F}_{11}\right]$ [15], TBATa $_{2} \mathrm{~F}_{11}$ [16], $\mathrm{Hg}_{4}\left(\mathrm{Ta}_{2} \mathrm{~F}_{11}\right)_{2}$ [11].

2. Results and discussion

Synthesis in stoichiometric ratio between the $\mathrm{MF}_{2}(\mathrm{M}=\mathrm{Cd}, \mathrm{Hg})$ and TaF_{5} (1:4) in aHF led to formation of $\mathrm{Cd}\left(\mathrm{Ta}_{2} \mathrm{~F}_{11}\right)_{2}$ and Hg $\left(\mathrm{Ta}_{2} \mathrm{~F}_{11}\right)_{2}$. Products are structurally related and both crystallize in triclinic $P-1$ space group.

Metal centres in crystal structures are surrounded by eight fluorine atoms from four $\mathrm{Ta}_{2} \mathrm{~F}_{11}$ units in deformed square antiprism arrangement. (Figs. 1 and 2)

Both $\mathrm{Ta}_{2} \mathrm{~F}_{11}$ groups from asymmetric unit act as bidentate bridging ligands connecting two cadmium or mercury metal centers into chains along b axis (Figs. 3 and 4).
$\mathrm{Cd}-\mathrm{F}$ distances in the crystal structure of $\mathrm{Cd}\left(\mathrm{Ta}_{2} \mathrm{~F}_{11}\right)_{2}$ are in range from $2.251(4)$ to $2.410(4) \AA$ (Fig. 1) which is similar to distances in CdF_{2} ($2.333 \AA$) [17]. Both crystallographically different $\mathrm{Ta}_{2} \mathrm{~F}_{11}{ }^{-}$anions in the crystal structure are coordinated to two different cadmium atoms as bidentate bridging ligand (Fig. 5).

All Ta- $\mathrm{F}(\mathrm{Cd})$ bond distances are elongated and are in range from $1.918(4)$ to $1.942(4) \AA$. Polarization of the anion reduces nonbridging Ta-F distances which are in range from 1.821(4) to 1.851 (4) with the Ta-F distances opposite to $\mathrm{Ta}-\mathrm{F}(\mathrm{Ta})$ bond being the shortest. Bridging Ta-F(Ta) distances are from 2.056(4) to 2.077(4) \AA. Cd to Cd distances in chain are 4.901(1) and 4.976(1) \AA, which is well over the sum of Van der Waals radii, negating any possibility of direct metal-metal bonding [18].
$\mathrm{Hg}-\mathrm{F}$ distances in the crystal structure of $\mathrm{Hg}\left(\mathrm{Ta}_{2} \mathrm{~F}_{11}\right)_{2}$ are in range from 2.329 (6) to $2.428(6)$ A which is comparable to distances in $\mathrm{HgF}_{2} 2.40 \AA$ [19]. $\mathrm{Ta}-\mathrm{F}(\mathrm{Hg})$ distances are elongated and are in range from 1.926(7) to 1.948(6) Å. Non-bridging Ta-F distances are reduced similarly than in the crystal structure of $\mathrm{Cd}\left(\mathrm{Ta}_{2} \mathrm{~F}_{11}\right)_{2}$. Bridging Ta-F(Ta) distances are from 2.059(6) to 2.069(6) Å. Distances between neighboring Hg atoms in the same chain are 4.902(1) and 4.961(1) \AA, which is again longer than the sum of Van der Waals radii [18].

The $\mathrm{A}_{2} \mathrm{~F}_{11}{ }^{-}$anions are considered weak ligands, and can be easily removed from coordination sphere of a metal cation in the presence of stronger ligands like CO [10]. On the other hand they tend to bend and orient themselves in such a way that they maximize the number of interactions with the cations through either hydrogen bonds $[20,21$] or act as a chelating ligands [7$9,22,23]$. As a consequence of those effects, $\mathrm{A}_{2} \mathrm{~F}_{11}{ }^{-}$anions are heavily distorted in practically all the crystal structures determined so far when measured by A-F-A bridge angles together with the torsion angle between two planar $\mathrm{SbF}_{4 \mathrm{eq}}$ groups from eclipsed

Fig. 1. Coordination sphere of Cd in the crystal structure of $\mathrm{Cd}\left(\mathrm{Ta}_{2} \mathrm{~F}_{11}\right)_{2}$. Thermal ellipsoids are drawn at the 50% probability. Symmetry codes: (i) $2-x, 1-y, 2-z$; (ii) $2-x, 2-y, 2-z$.

Fig. 2. Coordination sphere of Hg in the crystal structure of $\mathrm{Hg}\left(\mathrm{Ta}_{2} \mathrm{~F}_{11}\right)_{2}$. Thermal ellipsoids are drawn at the 50% probability. Symmetry codes: (i) $-x, 1-y, 1-z$; (ii) $-x, 2-y, 1-z$.
to staggered conformation [24]. Gas phase calculations show that $\mathrm{A}_{2} \mathrm{~F}_{11}{ }^{-}$anions should exist in $D_{4 h}$ symmetry [25], which is supported by recent crystal structure of the $\left[2,4-(\mathrm{OMe})_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right]$ $\left[A_{2} F_{11}\right](A=N b, T a)$. The $A_{2} \mathrm{~F}_{11}{ }^{-}$anion is completely linear in the described compound and is sandwiched between two arenium rings. DFT calculations for that system with $\mathrm{Nb}_{2} \mathrm{~F}_{11}{ }^{-}$anion showed, that considering the interactions between a single anion and two adjacent arenium cations, a pile arrangement is theoretically favored, thus forcing the linearity of the $\mathrm{Nb}-\mathrm{F}-\mathrm{Nb}$ bridge. Conversely, the calculated structure related to one ion-pair in the gas phase shows bent $\mathrm{Nb}-\mathrm{F}-\mathrm{Nb}$ angle (159.5) ${ }^{\circ}$ [15].

Bidentate coordination to two different metal atoms forces $\mathrm{Ta}_{2} \mathrm{~F}_{11}{ }^{-}$anions to adopt even more distorted shape, which is shown in bridging Ta-F-Ta angles being 149.8(2) ${ }^{\circ}$ and 149.9(2) ${ }^{\circ}$ (dihedral angles $\left.27.5(1)^{\circ}, 23.4(1)^{\circ}\right)$ in the crystal structure of $\mathrm{Cd}\left(\mathrm{Ta}_{2} \mathrm{~F}_{11}\right)_{2}$, while the mercury analogue is slightly less distorted with Ta-F-Ta angles of $151.7(3)^{\circ}$ and $154.1(4)^{\circ}$ (dihedral angles $16.2(2)^{\circ}, 23.9$ (2) ${ }^{\circ}$) (Fig. 6), probably as a consequence of slightly larger crystal radius of $\mathrm{Hg}^{2+}\left(1.28, \mathrm{Hg}^{2+} ; 1.24, \mathrm{Cd}^{2+}\right)[26]$. Ta-F-Ta angle in related mercury compound $-\mathrm{Hg}_{4}\left(\mathrm{Ta}_{2} \mathrm{~F}_{11}\right)_{2}$ is $153(1)^{\circ}$ [11], which is comparable to the ones obtained in the current study.

Such effects can also be seen in $\left(\mathrm{H}_{3} \mathrm{O}\right) \mathrm{Cd}\left(\mathrm{SbF}_{6}\right)\left(\mathrm{Sb}_{2} \mathrm{~F}_{11}\right)_{2}$ where one $\mathrm{Sb}_{2} \mathrm{~F}_{11}{ }^{-}$anion is tridentately coordinated to single cadmium cation having $\mathrm{Sb}-\mathrm{F}-\mathrm{Sb}$ angle as low as 143.1(3) ${ }^{\circ}$, while the other $\mathrm{Sb}_{2} \mathrm{~F}_{11}{ }^{-}$anion with bidentate coordination has $147.9(2)^{\circ}$ angle [7]. Type of coordination influences torsion angle to a degree that cation and especially type of bonding to it dictates anion conformation in a crystal structure.

Reactions of both HgF_{2} and CdF_{2} with TaF_{5} in 1:2 molar ratio resulted in $\mathrm{M}\left(\mathrm{TaF}_{6}\right)_{2}$ type of compound as expected, but crystallization of the product from solvent aHF ended up with $\mathrm{Cd}(\mathrm{HF})_{2}\left(\mathrm{TaF}_{6}\right)_{2} \cdot \mathrm{nHF}$ and $\mathrm{Hg}\left(\mathrm{HF}_{2}\left(\mathrm{TaF}_{6}\right)_{2} \cdot \mathrm{nHF} . \mathrm{Cd}\left(\mathrm{HF}_{2}\right)_{2}\left(\mathrm{TaF}_{6}\right)_{2} \cdot \mathrm{nHF}\right.$ crystallizes in $P-1$ space group. Central cadmium atom has preferred coordination number 8 and is surrounded by 6 fluorine atoms from TaF_{6} units and 2 fluorine atoms from coordinated HF molecules (Fig. 7). Basic building blocks consist of eight membered rings containing 2 cadmium, 2 tantalum and 4 fluorine atoms that are further connected into layers running along c axis. $\mathrm{Cd}-\mathrm{F}(\mathrm{Ta})$ distances are from 2.218(4) to 2.301(4) Å, while Cd-F(HF) are 2.419 (5) and 2.674(7) $\AA . \operatorname{HF}(3)$ molecule is located outside the metal coordination sphere between two layers and is fixed in the crystal

https://daneshyari.com/en/article/1313499

Download Persian Version:
https://daneshyari.com/article/1313499

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: gasper.tavcar@ijs.si (G. Tavčar).

