FLSEVIER

Contents lists available at ScienceDirect

Journal of Fluorine Chemistry

journal homepage: www.elsevier.com/locate/fluor

Synthesis of fluorinated rhodamines and application for confocal laser scanning microscopy

Mark Jbeily, Regina Schöps, Jörg Kressler*

Department of Chemistry, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany

ARTICLE INFO

Article history:
Received 23 June 2016
Received in revised form 28 July 2016
Accepted 31 July 2016
Available online 1 August 2016

Chemical compounds studied in this article:
Heptafluorobutyric anhydride (PubChem
CID: 67643)
Pentadecafluorooctanoyl chloride
(PubChem CID: 78978)
1-iodo-1H,1H,2H,2H-perfluorodecane
(PubChem CID: 74885)
1-iodo-1H,1H,2H,2H-perfluorododecane
(PubChem CID: 74886)
2,2,2-trifluoroethanol (PubChem CID: 6409)
DPPC (PubChem CID: 452110)
Perfluoropalmitic acid (PubChem
CID: 106027)

Keywords: Fluorinated rhodamines Giant unilamellar vesicles Confocal laser scanning microscopy Fluorophilicity

ABSTRACT

Four different fluorinated fluorescence dyes were prepared by attaching perfluoroalkyl ponytails (including CH_2 or C_2H_4 spacer) to each of the two amine groups of rhodamine (Rh) and characterized with respect to their fluorescence properties in 2,2,2-trifluoroethanol (TFE), N,N-dimethylformamide (DMF), tetrahydrofuran (THF), and toluene. They showed an excellent quantum yield in TFE. Double staining with $Rh-C_2H_4-C_{10}F_{21}$ and Rh-DPPE was employed to visualize the distribution of perfluoropalmitic acid in mixed giant unilamellar vesicles with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) observed by confocal laser scanning microscopy.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Rhodamine (Rh) based fluorescence dyes have been employed frequently for all kinds of fluorescence microscopy [1]. In life sciences, Rh-based fluorescence dyes with one or two fatty acid chains are used since they incorporate selectively into the hydrophobic part of the double layer of cell or model membranes [2]. Fluorinated Rh dyes are synthesized since they have high quantum yields, and good photostability [3,4]. Additionally, it has been demonstrated that they exhibit some kind of fluorophilicity when functionalized with fluorous ponytails [5] since they tend to adsorb on fluorous silica gel in flash columns (F-SPE) when eluted with a fluorophobic solvent as e.g. aqueous methanol as reported by Kölmel et al. [6]. There seems to be some need for the detection

of fluorine-rich domains by fluorescence techniques since more and more pharmaceutical active ingredients contain some perfluoroalkyl groups [7,8]. Furthermore, designer proteins employ highly fluorinated non-native amino acids [9], polar hydrophobic fluorinated sugars are introduced [10,11], fluorinated amphiphiles are synthesized for drug delivery [12], fluorinated compounds are used in medicinal chemistry [13,14], and fluorinated block copolymers are designed for specific membrane interactions [15,16].

Here, we describe the synthesis of four fluorinated rhodamines Rh- $C_{n}H_{2n}$ - $C_{m}F_{2m+1}$ (F-rhodamines with the m,n combinations of (1,3), (1,7), (2,8), and (2,10)). One F-ponytail ($-C_{n}H_{2n}$ - $C_{m}F_{2m+1}$) is attached to each of the two amine groups of rhodamine. Then, UV-vis and fluorescence spectra are measured and the quantum yield is determined. Finally, the dye with the longest F-ponytails Rh- $C_{2}H_{4}$ - $C_{10}F_{21}$ is employed together with Rh-DPPE to stain selectively fluorine-rich domains in mixed giant unilamellar vesicles (GUVs) of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and

^{*} Corresponding author. E-mail address: joerg.kressler@chemie.uni-halle.de (J. Kressler).

perfluoropalmitic acid (PFPA) as observed by confocal laser scanning microscopy (CLSM).

2. Results and discussion

2.1. Synthesis and characterization

Four different rhodamines having partially fluorinated ponytails as shown in Scheme 1 d.h.k.l were synthesized similarly to procedures applied by Belov and Hell et al. [3,17] and Kölmel et al. [6]. Compound **h** has been reported by Kölmel et al. synthesized in a different way. For the synthesis of Rh-CH₂-C₃F₇ heptafluorobutyric anhydride was reacted with *m*-anisidine in dichloromethane (DCM) in the presence of triethylamine (TEA) as an organic base for 12 h to obtain the C_3F_7 -secondary amide intermediate (**a**). It was further reduced in the presence of lithium aluminum hydride (LiAlH₄) in THF under reflux for 12 h to obtain the C₃F₇-CH₂secondary amine intermediate (b). It was demethylated by reacting with boron tribromide in DCM under reflux for 12 h to obtain the C_3F_7 -CH₂-secondary amino phenol intermediate (\mathbf{c}). It was then reacted with phthalic anhydride in the presence of p-toluenesulfonic acid monohydrate and an excess of propionic acid at 160 °C for 24 h to obtain the Rh-CH₂-C₃F₇ fluorescence dye (\mathbf{d}) in a yield of 24%. Rh-CH₂-C₇F₁₅ (**h**) was synthesized in a similar way to Rh-CH₂- $C_3F_7(\mathbf{d})$ with a main difference regarding the first synthesis step of the C₇F₁₅-secondary amide intermediate (e) in which pentadecafluorooctanoyl chloride was used to functionalize m-anisidine with a C₇F₁₅-alkyl group in the presence of pyridine. C₇F₁₅-CH₂secondary amine intermediate (f) was synthesized similarly to (**b**) and the C_7F_{15} -CH₂-secondary amino phenol (**g**) was prepared in a similar way to (c). Compounds (i) and (j) were synthesized by reacting 3-aminophenol with the corresponding alkyl iodide

bearing C_8F_{17} and $C_{10}F_{21}$ groups with two methylene spacers in 1-methyl-2-pyrrolidone (NMP) with ethyldiisopropylamine (DIPEA) as an organic base at $100\,^{\circ}\text{C}$ for $24\,\text{h}$ to obtain the C_8F_{17} - C_2H_4 -secondary amino phenol intermediates (\mathbf{i}) and $C_{10}F_{21}C_2H_4$ -secondary amino phenol (\mathbf{j}), respectively. The last synthesis part yielding fluorinated fluorescence dyes Rh-CH₂- C_7F_{15} , Rh- C_2H_4 - C_8F_{17} , and Rh- C_2H_4 - $C_{10}F_{21}$ was a Friedel-Crafts condensation step [18] similar to the one used to synthesize Rh-CH₂- C_3F_7 (\mathbf{d}). As an example, the characteristic 1H and ^{19}F NMR spectra are given for Rh- C_2H_4 - $C_{10}F_{21}$ (\mathbf{l}) in Figs. 1 and 2, respectively. The NMR spectra of the other three F-rhodamines and their electrospray ionization time of flight (ESI-TOF) spectra are shown in the Supplementary data (Fig. S1–S10).

¹⁹F NMR peaks were assigned according to data given by W. R. Dolbier [19].

2.2. UV-vis and fluorescence spectroscopy

The absorbance and emission of the four dyes was measured in 2,2,2-trifluoroethanol (TFE), *N,N*-dimethylformamide (DMF), tetrahydrofuran (THF), and toluene as a function of concentration in the dilute regime where the Lambert-Beer law is obeyed (absorbance less than 0.1, Supplementary data, Fig. S11–S22). Thus, all UV–vis and fluorescence measurements were done at concentrations less than 2 μ M (equivalent to an absorption of less than 0.1 in TFE) to be safely within the linear regime. Quantum yields of the F-rhodamines Φ_x in TFE, DMF, THF, and toluene were calculated relative to a standard (fluorescein in 0.1 M NaOH aqueous solution with a quantum yield of Φ_{st} = 0.89) as shown in Table 1 based on a protocol published by Würth et al. [20]. Absorbance f and emission flux F were measured at 490 and 491 nm for Rh-CH₂-C₃F₇ and Rh-CH₂-C₇F₁₅, respectively, in TFE,

Scheme 1. Synthesis of F-rhodamines Rh- C_nH_{2n} - C_mF_{2m+1} . i) DCM, TEA, 0 °C to RT, 12 h, ii) DCM, pyridine, 0 °C to RT, 12 h; iii) THF, LiAlH₄, reflux, 12 h; iv) DCM, BBr₃, reflux, 12 h; v) NMP, DIPEA, 100 °C, 24 h; vi) propionic acid, phthalic anhydride, p-toluenesulfonic acid monohydrate, 160 °C, 24 h. The following F-rhodamines (n,m) were synthesized **d** (1,3), **h**(1,7), **k**(2,8), and **l**(2,10).

Download English Version:

https://daneshyari.com/en/article/1313504

Download Persian Version:

https://daneshyari.com/article/1313504

<u>Daneshyari.com</u>